Basically, I would like help designing an algorithm that takes a given number, and returns a random number that is unrelated to the first number. The stipulations being that
Here's an example in C#:
private void DoIt()
{
const long m = 101;
const long x = 387420489; // must be coprime to m
var multInv = MultiplicativeInverse(x, m);
var nums = new HashSet<long>();
for (long i = 0; i < 100; ++i)
{
var encoded = i*x%m;
var decoded = encoded*multInv%m;
Console.WriteLine("{0} => {1} => {2}", i, encoded, decoded);
if (!nums.Add(encoded))
{
Console.WriteLine("Duplicate");
}
}
}
private long MultiplicativeInverse(long x, long modulus)
{
return ExtendedEuclideanDivision(x, modulus).Item1%modulus;
}
private static Tuple<long, long> ExtendedEuclideanDivision(long a, long b)
{
if (a < 0)
{
var result = ExtendedEuclideanDivision(-a, b);
return Tuple.Create(-result.Item1, result.Item2);
}
if (b < 0)
{
var result = ExtendedEuclideanDivision(a, -b);
return Tuple.Create(result.Item1, -result.Item2);
}
if (b == 0)
{
return Tuple.Create(1L, 0L);
}
var q = a/b;
var r = a%b;
var rslt = ExtendedEuclideanDivision(b, r);
var s = rslt.Item1;
var t = rslt.Item2;
return Tuple.Create(t, s - q*t);
}
That generates numbers in the range 0-100, from input in the range 0-100. Each input results in a unique output.
It also shows how to reverse the process, using the multiplicative inverse.
You can extend the range by increasing the value of m
. x
must be coprime with m
.
Code cribbed from Eric Lippert's article, A practical use of multiplicative inverses, and a few of the previous articles in that series.
This sounds like a non-repeating random number generator. There are several possible approaches to this.
As described in this article, we can generate them by selecting a prime number p
and satisfies p % 4 = 3
that is large enough (greater than the maximum value in the output range) and generate them this way:
int randomNumberUnique(int range_len , int p , int x)
if(x * 2 < p)
return (x * x) % p
else
return p - (x * x) % p
This algorithm will cover all values in [0 , p)
for an input in range [0 , p)
.
You can not have completely unrelated (particularly if you want the reverse as well).
There is a concept of modulo inverse
of a number, but this would work only if the range
number is a prime, eg. 100 will not work, you would need 101 (a prime). This can provide you a pseudo random number if you want.
Here is the concept of modulo inverse:
If there are two numbers a and b
, such that
(a * b) % p = 1
where p
is any number, then
a and b are modular inverses of each other.
For this to be true, if we have to find the modular inverse of a
wrt a number p
, then a and p
must be co-prime, ie. gcd(a,p) = 1
So, for all numbers in a range to have modular inverses, the range bound must be a prime number.
A few outputs for range bound 101 will be:
1 == 1
2 == 51
3 == 34
4 == 76
etc.
EDIT:
Hey...actually you know, you can use the combined approach of modulo inverse and the method as defined by @Paul. Since every pair will be unique and all numbers will be covered, your random number can be:
random(k) = randomUniqueNumber(ModuloInverse(k), p) //this is Paul's function