read/write data in libsvm format

前端 未结 7 2026
慢半拍i
慢半拍i 2020-11-30 11:05

How do I read/write libsvm data into/from R?

The libsvm format is sparse data like

[ 

        
相关标签:
7条回答
  • 2020-11-30 12:02

    The question was asked a long time ago and has several answer. Most answers didn't work for me since my data comes in a long format, and I cant one-hot encode it in R. So here is my take. I wrote a function to one-hot encode the data, and save it without having to first transform the matrix into a sparse one.

    RCPP code:

    // [[Rcpp::depends(RcppArmadillo)]]
    #include <RcppArmadillo.h>
    #include <Rcpp.h>
    #include <iostream>
    #include <fstream>
    #include <string>
    using namespace Rcpp;
    
    // Reading data frame from R and saving it as an libFM file
    
    // [[Rcpp::export]] 
    std::string createNumber(int x, double y) {
      std::string s1 = std::to_string(x); 
      std::string s2 = std::to_string(y); 
      std::string X_elem = s1 + ":" + s2; 
      return X_elem;
    }
    
    // [[Rcpp::export]]
    std::string createRowLibFM(arma::rowvec row_to_fm, arma::vec factor_levels, arma::vec position) {
      int n = factor_levels.n_elem; 
      std::string total =  std::to_string(row_to_fm[0]); 
      for (int i = 1; i < n; i++) { 
        if (factor_levels[i] > 1) { 
          total = total + " " + createNumber(position[i - 1] + row_to_fm[i], 1);
        } 
        if (factor_levels[i] == 1) {
          total = total + " " + createNumber(position[i], row_to_fm[i]);
        }
      }
      return total; 
    }
    
    // [[Rcpp::export]]
    void writeFile(std::string file, arma::mat all_data, arma::vec factor_levels) {
      int n = all_data.n_rows;
      arma::vec position = arma::cumsum(factor_levels);
      std::ofstream temp_file;
      temp_file.open (file.c_str());
      for (int i = 0; i < n; i++) {
        std::string temp_row = createRowLibFM(all_data.row(i), factor_levels, position);
        temp_file << temp_row + "\n";
      }
      temp_file.close();
    }
    

    R function acting as wrapper for it:

    writeFileFM <- function(temp.data, path = 'test.txt') { 
      ### Dealing with y function 
      if (!(any(colnames(temp.data) %in% 'y'))) { 
        stop('No y column is given')  
      } else { 
        temp.data <- temp.data %>% select(y, everything()) ## y is required to be first column for writeFile 
      }
      ### Dealing with factors/strings 
      temp.classes <- sapply(temp.data, class) 
      class.num    <- rep(0, length(temp.classes))
      map.list     <- list()
      for (i in 2:length(temp.classes)) { ### since y is always the first column 
        if (any(temp.classes[i] %in% c('factor', 'character'))) {
          temp.col         <- as.factor(temp.data[ ,i]) ### incase it is character 
          temp.unique      <- levels(temp.col)
          factors.new      <- seq(0, length(temp.unique) - 1, 1)
          levels(temp.col) <- factors.new 
          temp.data[ ,i]   <- temp.col
          ### Saving changes 
          class.num[i]  <- length(temp.unique)
          map.list[[i - 1]] <- data.frame('original.value'  = temp.unique, 
                                          'transform.value' = factors.new)
        } else { 
          class.num[i]  <- 1  ### Numeric values require only 1 column 
        }
      }
      ### Writing file 
      print('Writing file to disc')
      writeFile(all_data = sapply(temp.data, as.numeric), file = path, factor_levels = class.num)
      return(map.list) 
    }
    

    Comparing it on fake data.

    ### Creating data to save 
    set.seed(999)
    n <- 10000 
    factor.lvl1 <- 3
    factor.lvl2 <- 2 
    temp.data <- data.frame('x1' = sample(stri_rand_strings(factor.lvl1, 7), n, replace = TRUE),
                            'x2' = sample(stri_rand_strings(factor.lvl2, 4), n, replace = TRUE), 
                            'x3' = rnorm(n), 
                            'x4' = rnorm(n),
                            'y'  = rnorm(n))
    
    ### Comparing to other method 
    library(data.table)
    library(e1071)
    
    microbenchmark::microbenchmark(
      temp.data.table <- model.matrix( ~ 0 + x1 + x2 + x3 + x4, data = temp.data,
                                       contrasts = list(x2 = contrasts(temp.data$x2, contrasts = FALSE))),
      write.matrix.csr(temp.data.table, 'out.txt'), 
      writeFileFM(temp.data))
    

    Results.

      min       lq       mean    median        uq
       1.3061   1.6725   1.890942   1.92475   2.07725
     629.9863 653.4345 676.108548 672.52510 687.88330
     270.8217 275.1353 283.537898 281.42100 289.39160
          max neval cld
       3.2328   100 a  
     793.7040   100   c
     328.0863   100  b 
    

    It is faster than the e1071 option, and while that option fails when increasing the number of observations, the method suggested is still applicable.

    0 讨论(0)
提交回复
热议问题