A puzzle related to nested loops

后端 未结 1 1071
北海茫月
北海茫月 2020-11-30 09:11

For a given input N, how many times does the enclosed statement executes?

for i in 1 … N loop
  for j in 1 … i loop
    for k in 1 … j loop
      sum = sum +         


        
相关标签:
1条回答
  • 2020-11-30 09:57
    • First, I written a C code to generate sum:
    int main(){
      int i =0, k =0, j =0, n =0;
      int N =0; 
      int sum =0;
      N =10;
      for (n=1; n <= N; n++){
      // unindented code here
      sum =0;
      for (i=1; i<=n; i++)
          for (j=1; j<=i; j++)
              for (k=1; k<=j; k++)
                  sum++;
    
      printf("\n N=%d  sum = %d",n, sum); 
      }
      printf("\n");
    }
    
    • Simple compile and generate result for N=1 to N=10 :

    $ gcc sum.c
    $ ./a.out

     N=1  sum = 1
     N=2  sum = 4
     N=3  sum = 10
     N=4  sum = 20
     N=5  sum = 35
     N=6  sum = 56
     N=7  sum = 84
     N=8  sum = 120
     N=9  sum = 165
     N=10  sum = 220
    
    • Then, Tried to explore How this works? with some diagrams:

      For, N=1:

    i<=N,     (i=1)       
                |
    j<=i,     (j=1)       
                |
    k<=j,     (K=1)       
                |
    sum=0.    sum++       ---> sum = 1
    

    That is (1) = 1

    For, N=2:

    i<=N,     (i=1)-------(i=2)
                |     |-----|-----|
    j<=i,     (j=1) (j=1)      (j=2)
                |     |     |----|----|
    k<=j,     (K=1) (K=1) (K=1)    (K=2)               
                |     |     |        |    
    sum=0,    sum++  sum++ sum++   sum++  --> sum = 4
    

    That is (1) + (1 + 2) = 4

    For, N=3:

    i<=N,     (i=1)-------(i=2)--------------------(i=3)
                |     |-----|-----|        |---------|-------------|
    j<=i,     (j=1) (j=1)      (j=2)     (j=1)      (j=2)        (j=3)
                |     |     |----|----|    |     |----|----|    |-----|-----|
    k<=j,     (K=1) (K=1) (K=1)    (K=2) (K=1) (K=1)    (K=2) (K=1) (K=2) (K=3)
                |     |     |        |     |     |        |     |     |        |
    sum=0,    sum++  sum++ sum++  sum++ sum++  sum++    sum++  sum++ sum++  sum++
                --> sum = 10
    

    That is (1) + (1 + 2) + ( 1 + 2 + 3 ) = 10

    N = 1, (1)    = 1                                           
    
    N = 2, (1) + (1 + 2)    = 4
    
    N = 3, (1) + (1 + 2) + (1 + 2 + 3)  = 10
    
    N = 4, (1) + (1 + 2) + (1 + 2 + 3) + (1 + 2 + 3 + 4)  = 20
    
    N = 5, (1) + (1 + 2) + (1 + 2 + 3) + (1 + 2 + 3 + 4) + (1 + 2 + 3 + 4 + 5)  = 35
    

    Finally, I could understood that sum of N in three loop is:

    (1) + (sum 0f 1 to 2) + ... + (sum of 1 to (N-2)) + (sum of 1 to (N-1) ) + (sum of 1 to N)

    or we can write it as:

    => (1) + (1 + 2) + ...+ (1 + 2 +....+ i) + ... + (1 + 2 + ....+ N-1) + (1 + 2 + ....+ N)

    => ( N * 1 ) + ( (N-1) * 2) + ( (N-2) * 3) +...+ ( (N -i+1) * i ) +... + ( 1 * N)

    You can refer here for simplification calculations: (I asked HERE )
    enter image description here

    [YOUR ANSWER]

    = ( ((N) * (N+1) * (N+2)) / 6 )

    And, I think its correct. I checked as follows:

    N = 1,    (1 * 2 * 3)/6  = 1
    
    N = 2,    (2 * 3 * 4)/6 = 4
    
    N = 3,    (3 * 4 * 5)/6 = 6
    
    N = 4,    (4 * 5 * 6)/6 = 10
    
    N = 5,    (5 * 6 * 7)/6 = 35   
    

    Also, The complexity of this algorithm is O(n3)

    EDIT:

    The following loop also has same numbers of count, that is = ( ((N) * (N+1) * (N+2)) / 6 )

    for i in 1 … N loop
      for j in i … N loop
        for k in j … N loop
          sum = sum + i ;
        end loop;
      end loop;
    end loop;
    
    0 讨论(0)
提交回复
热议问题