I\'d like to compute the variance for each row in a matrix. For the following matrix A
[,1] [,2] [,3]
[1,] 1 5 9
[2,] 5 6
This is one of the main reasons why apply()
is useful. It is meant to operate on the margins of an array or matrix.
set.seed(100)
m <- matrix(sample(1e5L), 1e4L)
library(microbenchmark)
microbenchmark(apply(m, 1, var))
# Unit: milliseconds
# expr min lq median uq max neval
# apply(m, 1, var) 270.3746 283.9009 292.2933 298.1297 343.9531 100
Is 300 milliseconds too long to make 10,000 calculations?
You could potentially vectorize var
over rows (or columns) using rowSums
and rowMeans
RowVar <- function(x, ...) {
rowSums((x - rowMeans(x, ...))^2, ...)/(dim(x)[2] - 1)
}
RowVar(A)
#[1] 16.0000 7.0000 564.3333 16.0000
Using @Richards data, yields in
microbenchmark(apply(m, 1, var), RowVar(m))
## Unit: milliseconds
## expr min lq median uq max neval
## apply(m, 1, var) 343.369091 400.924652 424.991017 478.097573 746.483601 100
## RowVar(m) 1.766668 1.916543 2.010471 2.412872 4.834471 100
You can also create a more general function that will receive a syntax similar to apply
but will remain vectorized (the column wise variance will be slower as the matrix needs to be transposed first)
MatVar <- function(x, dim = 1, ...) {
if(dim == 1){
rowSums((x - rowMeans(x, ...))^2, ...)/(dim(x)[2] - 1)
} else if (dim == 2) {
rowSums((t(x) - colMeans(x, ...))^2, ...)/(dim(x)[1] - 1)
} else stop("Please enter valid dimension")
}
MatVar(A, 1)
## [1] 16.0000 7.0000 564.3333 16.0000
MatVar(A, 2)
V1 V2 V3
## 547.333333 1.666667 1.666667