I have a pandas DataFrame
that has multiple columns in it:
Index: 239897 entries, 2012-05-11 15:20:00 to 2012-06-02 23:44:51
Data columns:
foo
Try this:
pandas.concat([df['foo'].dropna(), df['bar'].dropna()]).reindex_like(df)
If you want that data to become the new column bar
, just assign the result to df['bar']
.
Another option, use the .apply()
method on the frame. You can do reassign a column with deference to existing data...
import pandas as pd
import numpy as np
# get your data into a dataframe
# replace content in "bar" with "foo" if "bar" is null
df["bar"] = df.apply(lambda row: row["foo"] if row["bar"] == np.NaN else row["bar"], axis=1)
# note: change 'np.NaN' with null values you have like an empty string
More modern pandas versions (since at least 0.12) have the combine_first() and update() methods for DataFrame and Series objects. For example if your DataFrame were called df
, you would do:
df.bar.combine_first(df.foo)
which would only alter Nan values of the bar
column to match the foo
column, and would do so inplace. To overwrite non-Nan values in bar
with those in foo
, you would use the update()
method.
you can use directly fillna and assigning the result to the column 'bar'
df['bar'].fillna(df['foo'], inplace=True)
del df['foo']
general example:
import pandas as pd
#creating the table with two missing values
df1 = pd.DataFrame({'a':[1,2],'b':[3,4]}, index = [1,2])
df2 = pd.DataFrame({'b':[5,6]}, index = [3,4])
dftot = pd.concat((df1, df2))
print dftot
#creating the dataframe to fill the missing values
filldf = pd.DataFrame({'a':[7,7,7,7]})
#filling
print dftot.fillna(filldf)
You can do this using numpy
too.
df['bar'] = np.where(pd.isnull(df['bar']),df['foo'],df['bar'])