Replacing placeholder for tensorflow v2

后端 未结 1 2029
迷失自我
迷失自我 2020-11-30 06:03

For my project, I need to convert a directed graph into a tensorflow implementation of the graph as if it was a neural network. In tensorflow version 1, I could just define

相关标签:
1条回答
  • 2020-11-30 06:48

    Make your code work with TF 2.0

    Below is a sample code which you can use with TF 2.0. It relies on the compatibility API that is accessible as tensorflow.compat.v1, and requires to disable v2 behaviors. I don't know if it behaves as you expected. If not, then provide us more explanation of what you try to achieve.

    import tensorflow.compat.v1 as tf
    tf.disable_v2_behavior()
    
    @tf.function
    def construct_graph(graph_dict, inputs, outputs):
        queue = inputs[:]
        make_dict = {}
        for key, val in graph_dict.items():
            if key in inputs:
                make_dict[key] = tf.placeholder(tf.float32, name=key)
            else:
                make_dict[key] = None
        # Breadth-First search of graph starting from inputs
        while len(queue) != 0:
            cur = graph_dict[queue[0]]
            for outg in cur["outgoing"]:
                if make_dict[outg[0]]: # If discovered node, do add/multiply operation
                    make_dict[outg[0]] = tf.add(make_dict[outg[0]], tf.multiply(outg[1], make_dict[queue[0]]))
                else: # If undiscovered node, input is just coming in multiplied and add outgoing to queue
                    make_dict[outg[0]] = tf.multiply(make_dict[queue[0]], outg[1])
                    for outgo in graph_dict[outg[0]]["outgoing"]:
                        queue.append(outgo[0])
            queue.pop(0)
        # Returns one data graph for each output
        return [make_dict[x] for x in outputs]
    
    def main():
        graph_def = {
            "B": {
                "incoming": [],
                "outgoing": [("A", 1.0)]
            },
            "C": {
                "incoming": [],
                "outgoing": [("A", 1.0)]
            },
            "A": {
                "incoming": [("B", 2.0), ("C", -1.0)],
                "outgoing": [("D", 3.0)]
            },
            "D": {
                "incoming": [("A", 2.0)],
                "outgoing": []
            }
        }
        outputs = construct_graph(graph_def, ["B", "C"], ["A"])
        print(outputs)
    
    if __name__ == "__main__":
        main()
    
    [<tf.Tensor 'PartitionedCall:0' shape=<unknown> dtype=float32>]
    

     Migrate your code to TF 2.0

    While the above snippet is valid, it is still tied to TF 1.0. To migrate it to TF 2.0 you have to refactor a little bit your code.

    Instead of returning a list of tensors, which were callables with TF 1.0, I advise you to return a list of keras.layers.Model.

    Below is a working example:

    import tensorflow as tf
    
    def construct_graph(graph_dict, inputs, outputs):
        queue = inputs[:]
        make_dict = {}
        for key, val in graph_dict.items():
            if key in inputs:
                # Use keras.Input instead of placeholders
                make_dict[key] = tf.keras.Input(name=key, shape=(), dtype=tf.dtypes.float32)
            else:
                make_dict[key] = None
        # Breadth-First search of graph starting from inputs
        while len(queue) != 0:
            cur = graph_dict[queue[0]]
            for outg in cur["outgoing"]:
                if make_dict[outg[0]] is not None: # If discovered node, do add/multiply operation
                    make_dict[outg[0]] = tf.keras.layers.add([
                        make_dict[outg[0]],
                        tf.keras.layers.multiply(
                            [[outg[1]], make_dict[queue[0]]],
                        )],
                    )
                else: # If undiscovered node, input is just coming in multiplied and add outgoing to queue
                    make_dict[outg[0]] = tf.keras.layers.multiply(
                        [make_dict[queue[0]], [outg[1]]]
                    )
                    for outgo in graph_dict[outg[0]]["outgoing"]:
                        queue.append(outgo[0])
            queue.pop(0)
        # Returns one data graph for each output
        model_inputs = [make_dict[key] for key in inputs]
        model_outputs = [make_dict[key] for key in outputs]
        return [tf.keras.Model(inputs=model_inputs, outputs=o) for o in model_outputs]
    
    def main():
        graph_def = {
            "B": {
                "incoming": [],
                "outgoing": [("A", 1.0)]
            },
            "C": {
                "incoming": [],
                "outgoing": [("A", 1.0)]
            },
            "A": {
                "incoming": [("B", 2.0), ("C", -1.0)],
                "outgoing": [("D", 3.0)]
            },
            "D": {
                "incoming": [("A", 2.0)],
                "outgoing": []
            }
        }
        outputs = construct_graph(graph_def, ["B", "C"], ["A"])
        print("Builded models:", outputs)
        for o in outputs:
            o.summary(120)
            print("Output:", o((1.0, 1.0)))
    
    if __name__ == "__main__":
        main()
    

    What to notice here?

    • Change from placeholder to keras.Input, requiring to set the shape of the input.
    • Use keras.layers.[add|multiply] for computation. This is probably not required, but stick to one interface. However, it requires to wrap factors inside a list (to handle batching)
    • Build keras.Model to return
    • Call your model with a tuple of values (not a dictionary anymore)

    Here is the output of the code.

    Builded models: [<tensorflow.python.keras.engine.training.Model object at 0x7fa0b49f0f50>]
    Model: "model"
    ________________________________________________________________________________________________________________________
    Layer (type)                           Output Shape               Param #       Connected to                            
    ========================================================================================================================
    B (InputLayer)                         [(None,)]                  0                                                     
    ________________________________________________________________________________________________________________________
    C (InputLayer)                         [(None,)]                  0                                                     
    ________________________________________________________________________________________________________________________
    tf_op_layer_mul (TensorFlowOpLayer)    [(None,)]                  0             B[0][0]                                 
    ________________________________________________________________________________________________________________________
    tf_op_layer_mul_1 (TensorFlowOpLayer)  [(None,)]                  0             C[0][0]                                 
    ________________________________________________________________________________________________________________________
    add (Add)                              (None,)                    0             tf_op_layer_mul[0][0]                   
                                                                                    tf_op_layer_mul_1[0][0]                 
    ========================================================================================================================
    Total params: 0
    Trainable params: 0
    Non-trainable params: 0
    ________________________________________________________________________________________________________________________
    Output: tf.Tensor([2.], shape=(1,), dtype=float32)
    
    0 讨论(0)
提交回复
热议问题