I\'m working on some computer vision algorithm and I\'d like to show how a numpy array changes in each step.
What works now is that if I have a simple imshow(
You don't need to call imshow
all the time. It is much faster to use the object's set_data
method:
myobj = imshow(first_image)
for pixel in pixels:
addpixel(pixel)
myobj.set_data(segmentedimg)
draw()
The draw()
should make sure that the backend updates the image.
UPDATE: your question was significantly modified. In such cases it is better to ask another question. Here is a way to deal with your second question:
Matplotlib's animation only deals with one increasing dimension (time), so your double loop won't do. You need to convert your indices to a single index. Here is an example:
import numpy as np
from matplotlib import pyplot as plt
from matplotlib import animation
nx = 150
ny = 50
fig = plt.figure()
data = np.zeros((nx, ny))
im = plt.imshow(data, cmap='gist_gray_r', vmin=0, vmax=1)
def init():
im.set_data(np.zeros((nx, ny)))
def animate(i):
xi = i // ny
yi = i % ny
data[xi, yi] = 1
im.set_data(data)
return im
anim = animation.FuncAnimation(fig, animate, init_func=init, frames=nx * ny,
interval=50)
I implemented a handy script that just suits your needs. Try it out here
An example that shows images in a custom directory is like this:
import os
import glob
from scipy.misc import imread
img_dir = 'YOUR-IMAGE-DIRECTORY'
img_files = glob.glob(os.path.join(video_dir, '*.jpg'))
def redraw_fn(f, axes):
img_file = img_files[f]
img = imread(img_file)
if not redraw_fn.initialized:
redraw_fn.im = axes.imshow(img, animated=True)
redraw_fn.initialized = True
else:
redraw_fn.im.set_array(img)
redraw_fn.initialized = False
videofig(len(img_files), redraw_fn, play_fps=30)
I struggled to make it work because many post talk about this problem, but no one seems to care about providing a working example. In this case however, the reasons were different :
Also Tiago mentioned calling draw()
, but without specifying where to get it from - and by the way, you don't need it. the function you really need to call is flush_event()
. sometime it works without, but it's because it has been triggered from somewhere else. You can't count on it. The real important point is that you cannot call imshow()
on an empty table, or it will fail to initialize it's color map and set_data will fail too.
Here is a working solution :
IMAGE_SIZE = 500
import numpy as np
import matplotlib.pyplot as plt
plt.ion()
fig1, ax1 = plt.subplots()
fig2, ax2 = plt.subplots()
# this example doesn't work because array only contains zeroes
array = np.zeros(shape=(IMAGE_SIZE, IMAGE_SIZE), dtype=np.uint8)
axim1 = ax1.imshow(array)
array[0, 0] = 99 # this value allow imshow to initialise it's color scale
axim2 = ax2.imshow(array)
del array
for _ in range(50):
print(".", end="")
matrix = np.random.randint(0, 100, size=(IMAGE_SIZE, IMAGE_SIZE), dtype=np.uint8)
axim1.set_data(matrix)
fig1.canvas.flush_events()
axim2.set_data(matrix)
fig1.canvas.flush_events()
print()
If you are using Jupyter, maybe this answer interests you.
I read in this site that the emmbebed function of clear_output
can make the trick:
%matplotlib inline
from matplotlib import pyplot as plt
from IPython.display import clear_output
plt.figure()
for i in range(len(list_of_frames)):
plt.imshow(list_of_frames[i])
plt.title('Frame %d' % i)
plt.show()
clear_output(wait=True)
It is true that this method is quite slow, but it can be used for testing purposes.