I\'ve got a dataframe, and I\'m trying to append a column of sequential differences to it. I have found a method that I like a lot (and generalizes well for my use case).
You can see that the Series .diff()
method is different to np.diff()
:
In [11]: data.value.diff() # Note the NaN
Out[11]:
0 NaN
1 -0.410069
2 0.523736
3 -0.114340
4 -0.014955
5 -0.090033
6 -0.125686
7 0.414622
8 -0.319616
Name: value, dtype: float64
In [12]: np.diff(data.value.values) # the values array of the column
Out[12]:
array([-0.41006867, 0.52373625, -0.11434009, -0.01495459, -0.09003298,
-0.12568619, 0.41462233, -0.31961629])
In [13]: np.diff(data.value) # on the column (Series)
Out[13]:
0 NaN
1 0
2 0
3 0
4 0
5 0
6 0
7 0
8 NaN
Name: value, dtype: float64
In [14]: np.diff(data.value.index) # er... on the index
Out[14]: Int64Index([8], dtype=int64)
In [15]: np.diff(data.value.index.values)
Out[15]: array([1, 1, 1, 1, 1, 1, 1, 1])
Nice easy to reproduce example!! more questions should be like this!
Just pass a lambda to transform (this is tantamount to passing afuncton object, e.g. np.diff (or Series.diff) directly. So this equivalent to data1/data2
In [32]: data3['diffs'] = data3.groupby('ticker')['value'].transform(Series.diff)
In [34]: data3.sort_index(inplace=True)
In [25]: data3
Out[25]:
date ticker value diffs
0 2013-10-03 ticker_2 0.435995 0.015627
1 2013-10-04 ticker_2 0.025926 -0.410069
2 2013-10-02 ticker_1 0.549662 NaN
3 2013-10-01 ticker_0 0.435322 NaN
4 2013-10-02 ticker_2 0.420368 0.120713
5 2013-10-03 ticker_0 0.330335 -0.288936
6 2013-10-04 ticker_1 0.204649 -0.345014
7 2013-10-02 ticker_0 0.619271 0.183949
8 2013-10-01 ticker_2 0.299655 NaN
[9 rows x 4 columns]
I believe that np.diff
doesn't follow numpy's own unfunc guidelines to process array inputs (whereby it tries various methods to coerce input and send output, e.g. __array__
on input __array_wrap__
on output). I am not really sure why, see a bit more info here. So bottom line is that np.diff
is not dealing with the index properly and doing its own calculation (which in this case is wrong).
Pandas has a lot of methods where they don't just call the numpy function, mainly because they handle different dtypes, handle nans, and in this case, handle 'special' diffs. e.g. you can pass a time frequency to a datelike-index where it calculates how many n to actually diff.