Pyspark: Pass multiple columns in UDF

前端 未结 6 626
有刺的猬
有刺的猬 2020-11-30 02:47

I am writing a User Defined Function which will take all the columns except the first one in a dataframe and do sum (or any other operation). Now the dataframe can sometimes

相关标签:
6条回答
  • 2020-11-30 03:33

    This is the way I tried and seemed to work:

    colsToSum = df.columns[1:]
    df_sum = df.withColumn("rowSum", sum([df[col] for col in colsToSum]))
    
    0 讨论(0)
  • 2020-11-30 03:39

    Maybe it's a late answer, but I don't like using UDFs without necessity, so:

    from pyspark.sql.functions import col
    from functools import reduce
    data = [["a",1,2,5],["b",2,3,7],["c",3,4,8]]
    df = spark.createDataFrame(data,["id","v1","v2",'v3'])
    
    calculate = reduce(lambda a, x: a+x, map(col, ["v1","v2",'v3']))
    
    df.withColumn("Result", calculate)
    #
    #id v1  v2  v3  Result
    #a  1   2   5   8
    #b  2   3   7   12
    #c  3   4   8   15
    

    Here u could to use any operation which implement in Column. Also if u want to write a custom udf with specific logic, u could use it, because Column provide tree execution operations. Without collecting to array and sum on it.

    If compared with process as array operations, it will be bad from performance perspective, let's take a look at the physical plan, in my case and array case, in my case and array cased.

    my case:

    == Physical Plan ==
    *(1) Project [id#355, v1#356L, v2#357L, v3#358L, ((v1#356L + v2#357L) + v3#358L) AS Result#363L]
    +- *(1) Scan ExistingRDD[id#355,v1#356L,v2#357L,v3#358L]
    

    array case:

    == Physical Plan ==
    *(2) Project [id#339, v1#340L, v2#341L, v3#342L, pythonUDF0#354 AS Result#348]
    +- BatchEvalPython [<lambda>(array(v1#340L, v2#341L, v3#342L))], [pythonUDF0#354]
       +- *(1) Scan ExistingRDD[id#339,v1#340L,v2#341L,v3#342L]
    

    When possible - we need to avoid using UDFs as Catalyst does not know how to optimize those

    0 讨论(0)
  • 2020-11-30 03:43

    If all columns you want to pass to UDF have the same data type you can use array as input parameter, for example:

    >>> from pyspark.sql.types import IntegerType
    >>> from pyspark.sql.functions import udf, array
    >>> sum_cols = udf(lambda arr: sum(arr), IntegerType())
    >>> spark.createDataFrame([(101, 1, 16)], ['ID', 'A', 'B']) \
    ...     .withColumn('Result', sum_cols(array('A', 'B'))).show()
    +---+---+---+------+
    | ID|  A|  B|Result|
    +---+---+---+------+
    |101|  1| 16|    17|
    +---+---+---+------+
    
    >>> spark.createDataFrame([(101, 1, 16, 8)], ['ID', 'A', 'B', 'C'])\
    ...     .withColumn('Result', sum_cols(array('A', 'B', 'C'))).show()
    +---+---+---+---+------+
    | ID|  A|  B|  C|Result|
    +---+---+---+---+------+
    |101|  1| 16|  8|    25|
    +---+---+---+---+------+
    
    0 讨论(0)
  • 2020-11-30 03:50

    Another simple way without Array and Struct.

    from pyspark.sql.types import IntegerType
    from pyspark.sql.functions import udf, struct
    
    def sum(x, y):
        return x + y
    
    sum_cols = udf(sum, IntegerType())
    
    a=spark.createDataFrame([(101, 1, 16)], ['ID', 'A', 'B'])
    a.show()
    a.withColumn('Result', sum_cols('A', 'B')).show()
    
    0 讨论(0)
  • 2020-11-30 03:51

    If you don't want to type out all your column names and would rather just dump all the columns into your UDF, you'll need to wrap a list comprehension within a struct.

    from pyspark.sql.functions import struct, udf
    sum_udf = udf(lambda x: sum(x[1:]))
    df_sum = df.withColumn("result", sum_udf(struct([df[col] for col in df.columns])))
    
    0 讨论(0)
  • 2020-11-30 03:53

    Use struct instead of array

    from pyspark.sql.types import IntegerType
    from pyspark.sql.functions import udf, struct
    sum_cols = udf(lambda x: x[0]+x[1], IntegerType())
    a=spark.createDataFrame([(101, 1, 16)], ['ID', 'A', 'B'])
    a.show()
    a.withColumn('Result', sum_cols(struct('A', 'B'))).show()
    
    0 讨论(0)
提交回复
热议问题