I\'ve got a script updating 5-10 columns worth of data , but sometimes the start csv will be identical to the end csv so instead of writing an identical csvfile I want it to
Not sure if this is helpful or not, but I whipped together this quick python method for returning just the differences between two dataframes that both have the same columns and shape.
def get_different_rows(source_df, new_df):
"""Returns just the rows from the new dataframe that differ from the source dataframe"""
merged_df = source_df.merge(new_df, indicator=True, how='outer')
changed_rows_df = merged_df[merged_df['_merge'] == 'right_only']
return changed_rows_df.drop('_merge', axis=1)
Not sure if this existed at the time the question was posted, but pandas now has a built-in function to test equality between two dataframes: http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.equals.html.
A more accurate comparison should check for index names separately, because DataFrame.equals
does not test for that. All the other properties (index values (single/multiindex), values, columns, dtypes) are checked by it correctly.
df1 = pd.DataFrame([[1, 'a'], [2, 'b'], [3, 'c']], columns=['num', 'name'])
df1 = df1.set_index('name')
df2 = pd.DataFrame([[1, 'a'], [2, 'b'], [3, 'c']], columns=['num', 'another_name'])
df2 = df2.set_index('another_name')
df1.equals(df2)
True
df1.index.names == df2.index.names
False
Note: using index.names
instead of index.name
makes it work for multi-indexed dataframes as well.
This compares the values of two dataframes note the number of row/columns needs to be the same between tables
comparison_array = table.values == expected_table.values
print (comparison_array)
>>>[[True, True, True]
[True, False, True]]
if False in comparison_array:
print ("Not the same")
#Return the position of the False values
np.where(comparison_array==False)
>>>(array([1]), array([1]))
You could then use this index information to return the value that does not match between tables. Since it's zero indexed, it's referring to the 2nd array in the 2nd position which is correct.
You also need to be careful to create a copy of the DataFrame, otherwise the csvdata_old will be updated with csvdata (since it points to the same object):
csvdata_old = csvdata.copy()
To check whether they are equal, you can use assert_frame_equal as in this answer:
from pandas.util.testing import assert_frame_equal
assert_frame_equal(csvdata, csvdata_old)
You can wrap this in a function with something like:
try:
assert_frame_equal(csvdata, csvdata_old)
return True
except: # appeantly AssertionError doesn't catch all
return False
There was discussion of a better way...
Check using: df_1.equals(df_2) # Returns True or False, details herebelow
In [45]: import numpy as np
In [46]: import pandas as pd
In [47]: np.random.seed(5)
In [48]: df_1= pd.DataFrame(np.random.randn(3,3))
In [49]: df_1
Out[49]:
0 1 2
0 0.441227 -0.330870 2.430771
1 -0.252092 0.109610 1.582481
2 -0.909232 -0.591637 0.187603
In [50]: np.random.seed(5)
In [51]: df_2= pd.DataFrame(np.random.randn(3,3))
In [52]: df_2
Out[52]:
0 1 2
0 0.441227 -0.330870 2.430771
1 -0.252092 0.109610 1.582481
2 -0.909232 -0.591637 0.187603
In [53]: df_1.equals(df_2)
Out[53]: True
In [54]: df_3= pd.DataFrame(np.random.randn(3,3))
In [55]: df_3
Out[55]:
0 1 2
0 -0.329870 -1.192765 -0.204877
1 -0.358829 0.603472 -1.664789
2 -0.700179 1.151391 1.857331
In [56]: df_1.equals(df_3)
Out[56]: False