Get data from plot with matplotlib

后端 未结 2 1781
既然无缘
既然无缘 2020-11-30 02:33

I\'m using matplotlib in python to build a scatter plot.

suppose I have the following 2 data lists.

X=[1,2,3,4,5]

Y=[6,7,8,9,10]

相关标签:
2条回答
  • 2020-11-30 03:16

    Using a slightly modified version of Joe Kington's DataCursor:

    import matplotlib.pyplot as plt
    import matplotlib.mlab as mlab
    import matplotlib.cbook as cbook
    import numpy as np
    
    def fmt(x, y):
        return 'x: {x:0.2f}\ny: {y:0.2f}'.format(x = x, y = y)
    
    class DataCursor(object):
        # https://stackoverflow.com/a/4674445/190597
        """A simple data cursor widget that displays the x,y location of a
        matplotlib artist when it is selected."""
        def __init__(self, artists, x = [], y = [], tolerance = 5, offsets = (-20, 20),
                     formatter = fmt, display_all = False):
            """Create the data cursor and connect it to the relevant figure.
            "artists" is the matplotlib artist or sequence of artists that will be 
                selected. 
            "tolerance" is the radius (in points) that the mouse click must be
                within to select the artist.
            "offsets" is a tuple of (x,y) offsets in points from the selected
                point to the displayed annotation box
            "formatter" is a callback function which takes 2 numeric arguments and
                returns a string
            "display_all" controls whether more than one annotation box will
                be shown if there are multiple axes.  Only one will be shown
                per-axis, regardless. 
            """
            self._points = np.column_stack((x,y))
            self.formatter = formatter
            self.offsets = offsets
            self.display_all = display_all
            if not cbook.iterable(artists):
                artists = [artists]
            self.artists = artists
            self.axes = tuple(set(art.axes for art in self.artists))
            self.figures = tuple(set(ax.figure for ax in self.axes))
    
            self.annotations = {}
            for ax in self.axes:
                self.annotations[ax] = self.annotate(ax)
    
            for artist in self.artists:
                artist.set_picker(tolerance)
            for fig in self.figures:
                fig.canvas.mpl_connect('pick_event', self)
    
        def annotate(self, ax):
            """Draws and hides the annotation box for the given axis "ax"."""
            annotation = ax.annotate(self.formatter, xy = (0, 0), ha = 'right',
                    xytext = self.offsets, textcoords = 'offset points', va = 'bottom',
                    bbox = dict(boxstyle = 'round,pad=0.5', fc = 'yellow', alpha = 0.5),
                    arrowprops = dict(arrowstyle = '->', connectionstyle = 'arc3,rad=0')
                    )
            annotation.set_visible(False)
            return annotation
    
        def snap(self, x, y):
            """Return the value in self._points closest to (x, y).
            """
            idx = np.nanargmin(((self._points - (x,y))**2).sum(axis = -1))
            return self._points[idx]
        def __call__(self, event):
            """Intended to be called through "mpl_connect"."""
            # Rather than trying to interpolate, just display the clicked coords
            # This will only be called if it's within "tolerance", anyway.
            x, y = event.mouseevent.xdata, event.mouseevent.ydata
            annotation = self.annotations[event.artist.axes]
            if x is not None:
                if not self.display_all:
                    # Hide any other annotation boxes...
                    for ann in self.annotations.values():
                        ann.set_visible(False)
                # Update the annotation in the current axis..
                x, y = self.snap(x, y)
                annotation.xy = x, y
                annotation.set_text(self.formatter(x, y))
                annotation.set_visible(True)
                event.canvas.draw()
    
    x=[1,2,3,4,5]
    y=[6,7,8,9,10]
    
    fig = plt.figure()
    ax = fig.add_subplot(1, 1, 1)
    scat = ax.scatter(x, y)
    DataCursor(scat, x, y)
    plt.show()
    

    yields

    enter image description here

    You can click on any of the points and the balloon will show the underlying data values.


    My slight modification to the DataCursor was to add the snap method, which ensures that the data point displayed came from the original data set, rather than the location where the mouse actually clicked.


    If you have scipy installed, you might prefer this version of the Cursor, which makes the balloon follow the mouse (without clicking):

    import datetime as DT
    import matplotlib.pyplot as plt
    import matplotlib.dates as mdates
    import numpy as np
    import scipy.spatial as spatial
    
    def fmt(x, y, is_date):
        if is_date:
            x = mdates.num2date(x).strftime("%Y-%m-%d")
            return 'x: {x}\ny: {y}'.format(x=x, y=y)
        else:
            return 'x: {x:0.2f}\ny: {y:0.2f}'.format(x=x, y=y)
    
    
    class FollowDotCursor(object):
        """Display the x,y location of the nearest data point."""
        def __init__(self, ax, x, y, tolerance=5, formatter=fmt, offsets=(-20, 20)):
            try:
                x = np.asarray(x, dtype='float')
                self.is_date = False
            except (TypeError, ValueError):
                x = np.asarray(mdates.date2num(x), dtype='float')
                self.is_date = True
            y = np.asarray(y, dtype='float')
            self._points = np.column_stack((x, y))
            self.offsets = offsets
            self.scale = x.ptp()
            self.scale = y.ptp() / self.scale if self.scale else 1
            self.tree = spatial.cKDTree(self.scaled(self._points))
            self.formatter = formatter
            self.tolerance = tolerance
            self.ax = ax
            self.fig = ax.figure
            self.ax.xaxis.set_label_position('top')
            self.dot = ax.scatter(
                [x.min()], [y.min()], s=130, color='green', alpha=0.7)
            self.annotation = self.setup_annotation()
            plt.connect('motion_notify_event', self)
    
        def scaled(self, points):
            points = np.asarray(points)
            return points * (self.scale, 1)
    
        def __call__(self, event):
            ax = self.ax
            # event.inaxes is always the current axis. If you use twinx, ax could be
            # a different axis.
            if event.inaxes == ax:
                x, y = event.xdata, event.ydata
            elif event.inaxes is None:
                return
            else:
                inv = ax.transData.inverted()
                x, y = inv.transform([(event.x, event.y)]).ravel()
            annotation = self.annotation
            x, y = self.snap(x, y)
            annotation.xy = x, y
            annotation.set_text(self.formatter(x, y, self.is_date))
            self.dot.set_offsets((x, y))
            bbox = ax.viewLim
            event.canvas.draw()
    
        def setup_annotation(self):
            """Draw and hide the annotation box."""
            annotation = self.ax.annotate(
                '', xy=(0, 0), ha = 'right',
                xytext = self.offsets, textcoords = 'offset points', va = 'bottom',
                bbox = dict(
                    boxstyle='round,pad=0.5', fc='yellow', alpha=0.75),
                arrowprops = dict(
                    arrowstyle='->', connectionstyle='arc3,rad=0'))
            return annotation
    
        def snap(self, x, y):
            """Return the value in self.tree closest to x, y."""
            dist, idx = self.tree.query(self.scaled((x, y)), k=1, p=1)
            try:
                return self._points[idx]
            except IndexError:
                # IndexError: index out of bounds
                return self._points[0]
    
    x = [DT.date.today()+DT.timedelta(days=i) for i in [10,20,30,40,50]]
    y = [6,7,8,9,10]
    
    fig = plt.figure()
    ax = fig.add_subplot(1, 1, 1)
    ax.scatter(x, y)
    cursor = FollowDotCursor(ax, x, y)
    fig.autofmt_xdate()
    plt.show()
    

    0 讨论(0)
  • 2020-11-30 03:19

    Can do this using mpld3 now in a few lines:

    https://mpld3.github.io/examples/html_tooltips.html

    0 讨论(0)
提交回复
热议问题