I need some help with a program I\'m writing for my Programming II class at universtiy. The question asks that one calculates the Fibonacci sequence using recursion. One mus
Here is my implementation of recursive fibonacci memoization. Using BigInteger and ArrayList allows to calculate 100th or even larger term. I tried 1000th terms, and result is returned in a matter of milliseconds, here is the code:
private static List<BigInteger> dict = new ArrayList<BigInteger>();
public static void printFebonachiRecursion (int num){
if (num==1){
printFebonachiRecursion(num-1);
System.out.printf("Term %d: %d%n",num,1);
dict.add(BigInteger.ONE);
}
else if (num==0){
System.out.printf("Term %d: %d%n",num,0);
dict.add(BigInteger.ZERO);
}
else {
printFebonachiRecursion(num-1);
dict.add(dict.get(num-2).add(dict.get(num-1)));
System.out.printf("Term %d: %d%n",num,dict.get(num));
}
}
Output example
printFebonachiRecursion(100);
Term 0: 0
Term 1: 1
Term 2: 1
Term 3: 2
...
Term 98: 135301852344706746049
Term 99: 218922995834555169026
Term 100: 354224848179261915075
#include <stdio.h>
long int A[100]={1,1};
long int fib(int n){
if (A[n])
{
return A[n];
}
else
{
return A[n]=fib(n-1)+fib(n-2);
}
}
int main(){
printf("%ld",fib(30));
}
public static int fib(int n, Map<Integer,Integer> map){
if(n ==0){
return 0;
}
if(n ==1){
return 1;
}
if(map.containsKey(n)){
return map.get(n);
}
Integer fibForN = fib(n-1,map) + fib(n-2,map);
map.put(n, fibForN);
return fibForN;
}
Similar to most solutions above but using a Map instead.
Might be too old but here is my solution for swift
class Recursion {
func fibonacci(_ input: Int) {
var dictioner: [Int: Int] = [:]
dictioner[0] = 0
dictioner[1] = 1
print(fibonacciCal(input, dictioner: &dictioner))
}
func fibonacciCal(_ input: Int, dictioner: inout [Int: Int]) -> Int {
if let va = dictioner[input]{
return va
} else {
let firstPart = fibonacciCal(input-1, dictioner: &dictioner)
let secondPart = fibonacciCal(input-2, dictioner: &dictioner)
if dictioner[input] == nil {
dictioner[input] = firstPart+secondPart
}
return firstPart+secondPart
}
}
}
// 0,1,1,2,3,5,8
class TestRecursion {
func testRecursion () {
let t = Recursion()
t.fibonacci(3)
}
}
You need to distinguish between already calculated number and not calculated numbers in the dictionary, which you currently don't: you always recalculate the numbers.
if (n == 0)
{
// special case because fib(0) is 0
return dictionary[0];
}
else
{
int f = dictionary[n];
if (f == 0) {
// number wasn't calculated yet.
f = fibonacci(n-1) + fibonacci(n-2);
dictionary[n] = f;
}
return f;
}
This is another way to approach memoization for recursive fibonacci() method using a static array of values -
public static long fibArray[]=new long[50];\\Keep it as large as you need
public static long fibonacci(long n){
long fibValue=0;
if(n==0 ){
return 0;
}else if(n==1){
return 1;
}else if(fibArray[(int)n]!=0){
return fibArray[(int)n];
}
else{
fibValue=fibonacci(n-1)+fibonacci(n-2);
fibArray[(int) n]=fibValue;
return fibValue;
}
}
Note that this method uses a global(class level) static array fibArray[]. To have a look at the whole code with explanation you can also see the following - http://www.javabrahman.com/gen-java-programs/recursive-fibonacci-in-java-with-memoization/