I have a Pandas DataFrame
with two columns – one with the filename and one with the hour in which it was generated:
File Hour
F1
The output that you get after DF.to_json is a string
. So, you can simply slice it according to your requirement and remove the commas from it too.
out = df.to_json(orient='records')[1:-1].replace('},{', '} {')
To write the output to a text file, you could do:
with open('file_name.txt', 'w') as f:
f.write(out)
instead of using dataframe.to_json(orient = “records”)
use dataframe.to_json(orient = “index”)
my above code convert the dataframe into json format of dict like {index -> {column -> value}}
In newer versions of pandas (0.20.0+, I believe), this can be done directly:
df.to_json('temp.json', orient='records', lines=True)
Direct compression is also possible:
df.to_json('temp.json.gz', orient='records', lines=True, compression='gzip')
To transform a dataFrame in a real json (not a string) I use:
from io import StringIO
import json
import DataFrame
buff=StringIO()
#df is your DataFrame
df.to_json(path_or_buf=buff,orient='records')
dfJson=json.loads(buff)
I think what the OP is looking for is:
with open('temp.json', 'w') as f:
f.write(df.to_json(orient='records', lines=True))
This should do the trick.
Here is small utility class that converts JSON to DataFrame and back: Hope you find this helpful.
# -*- coding: utf-8 -*-
from pandas.io.json import json_normalize
class DFConverter:
#Converts the input JSON to a DataFrame
def convertToDF(self,dfJSON):
return(json_normalize(dfJSON))
#Converts the input DataFrame to JSON
def convertToJSON(self, df):
resultJSON = df.to_json(orient='records')
return(resultJSON)