I have an irregular time-series (with DateTime and RainfallValue) in a csv file C:\\SampleData.csv
:
DateTime,RainInches
1/6/2000 11:59,0
1/6/20
Here is a data.table solution, this can be neatly done using a rolling join:
library(data.table)
library(xts)
lu <- data.table(index=as.POSIXct("2012-05-02") + (0:7)*15*60)
observation <- xts(1:10,
order.by=lu[1,index +cumsum(runif(10)*60*10)])
observation.dt <- as.data.table(observation)
observation.dt[lu,on="index",roll=T]
xts extends zoo, and zoo has extensive examples for this in its vignettes and documentation.
Here is a worked example. I think I have done that more elegantly in the past, but this is all I am coming up with now:
R> twohours <- ISOdatetime(2012,05,02,9,0,0) + seq(0:7)*15*60
R> twohours
[1] "2012-05-02 09:15:00 GMT" "2012-05-02 09:30:00 GMT"
[3] "2012-05-02 09:45:00 GMT" "2012-05-02 10:00:00 GMT"
[5] "2012-05-02 10:15:00 GMT" "2012-05-02 10:30:00 GMT"
[7] "2012-05-02 10:45:00 GMT" "2012-05-02 11:00:00 GMT"
R> set.seed(42)
R> observation <- xts(1:10, order.by=twohours[1]+cumsum(runif(10)*60*10))
R> observation
[,1]
2012-05-02 09:24:08.883625 1
2012-05-02 09:33:31.128874 2
2012-05-02 09:36:22.812594 3
2012-05-02 09:44:41.081170 4
2012-05-02 09:51:06.128481 5
2012-05-02 09:56:17.586051 6
2012-05-02 10:03:39.539040 7
2012-05-02 10:05:00.338998 8
2012-05-02 10:11:34.534372 9
2012-05-02 10:18:37.573243 10
A two hour time grid, and some random observations leaving some cells empty and some filled.
R> to.minutes15(observation)[,4]
observation.Close
2012-05-02 09:24:08.883625 1
2012-05-02 09:44:41.081170 4
2012-05-02 09:56:17.586051 6
2012-05-02 10:11:34.534372 9
2012-05-02 10:18:37.573243 10
That is a 15 minutes grid aggregation but not on our time grid.
R> twoh <- xts(rep(NA,8), order.by=twohours)
R> twoh
[,1]
2012-05-02 09:15:00 NA
2012-05-02 09:30:00 NA
2012-05-02 09:45:00 NA
2012-05-02 10:00:00 NA
2012-05-02 10:15:00 NA
2012-05-02 10:30:00 NA
2012-05-02 10:45:00 NA
2012-05-02 11:00:00 NA
R> merge(twoh, observation)
twoh observation
2012-05-02 09:15:00.000000 NA NA
2012-05-02 09:24:08.883625 NA 1
2012-05-02 09:30:00.000000 NA NA
2012-05-02 09:33:31.128874 NA 2
2012-05-02 09:36:22.812594 NA 3
2012-05-02 09:44:41.081170 NA 4
2012-05-02 09:45:00.000000 NA NA
2012-05-02 09:51:06.128481 NA 5
2012-05-02 09:56:17.586051 NA 6
2012-05-02 10:00:00.000000 NA NA
2012-05-02 10:03:39.539040 NA 7
2012-05-02 10:05:00.338998 NA 8
2012-05-02 10:11:34.534372 NA 9
2012-05-02 10:15:00.000000 NA NA
2012-05-02 10:18:37.573243 NA 10
2012-05-02 10:30:00.000000 NA NA
2012-05-02 10:45:00.000000 NA NA
2012-05-02 11:00:00.000000 NA NA
New xts object, and merged object. Now use na.locf()
to carry the observations
forward:
R> na.locf(merge(twoh, observation)[,2])
observation
2012-05-02 09:15:00.000000 NA
2012-05-02 09:24:08.883625 1
2012-05-02 09:30:00.000000 1
2012-05-02 09:33:31.128874 2
2012-05-02 09:36:22.812594 3
2012-05-02 09:44:41.081170 4
2012-05-02 09:45:00.000000 4
2012-05-02 09:51:06.128481 5
2012-05-02 09:56:17.586051 6
2012-05-02 10:00:00.000000 6
2012-05-02 10:03:39.539040 7
2012-05-02 10:05:00.338998 8
2012-05-02 10:11:34.534372 9
2012-05-02 10:15:00.000000 9
2012-05-02 10:18:37.573243 10
2012-05-02 10:30:00.000000 10
2012-05-02 10:45:00.000000 10
2012-05-02 11:00:00.000000 10
And then we can merge again as an inner join on the time-grid xts twoh
:
R> merge(twoh, na.locf(merge(twoh, observation)[,2]), join="inner")[,2]
observation
2012-05-02 09:15:00 NA
2012-05-02 09:30:00 1
2012-05-02 09:45:00 4
2012-05-02 10:00:00 6
2012-05-02 10:15:00 9
2012-05-02 10:30:00 10
2012-05-02 10:45:00 10
2012-05-02 11:00:00 10
R>