I am having trouble storing a numpy csr_matrix with PyTables. I\'m getting this error:
TypeError: objects of type ``csr_matrix`` are not supported in this co
The answer by DaveP is almost right... but can cause problems for very sparse matrices: if the last column(s) or row(s) are empty, they are dropped. So to be sure that everything works, the "shape" attribute must be stored too.
This is the code I regularly use:
import tables as tb
from numpy import array
from scipy import sparse
def store_sparse_mat(m, name, store='store.h5'):
msg = "This code only works for csr matrices"
assert(m.__class__ == sparse.csr.csr_matrix), msg
with tb.openFile(store,'a') as f:
for par in ('data', 'indices', 'indptr', 'shape'):
full_name = '%s_%s' % (name, par)
try:
n = getattr(f.root, full_name)
n._f_remove()
except AttributeError:
pass
arr = array(getattr(m, par))
atom = tb.Atom.from_dtype(arr.dtype)
ds = f.createCArray(f.root, full_name, atom, arr.shape)
ds[:] = arr
def load_sparse_mat(name, store='store.h5'):
with tb.openFile(store) as f:
pars = []
for par in ('data', 'indices', 'indptr', 'shape'):
pars.append(getattr(f.root, '%s_%s' % (name, par)).read())
m = sparse.csr_matrix(tuple(pars[:3]), shape=pars[3])
return m
It is trivial to adapt it to csc matrices.
A CSR matrix can be fully reconstructed from its data
, indices
and indptr
attributes. These are just regular numpy arrays, so there should be no problem storing them as 3 separate arrays in pytables, then passing them back to the constructor of csr_matrix
. See the scipy docs.
Edit: Pietro's answer has pointed out that the shape
member should also be stored
I have updated Pietro Battiston's excellent answer for Python 3.6 and PyTables 3.x, as some PyTables function names have changed in the upgrade from 2.x.
import numpy as np
from scipy import sparse
import tables
def store_sparse_mat(M, name, filename='store.h5'):
"""
Store a csr matrix in HDF5
Parameters
----------
M : scipy.sparse.csr.csr_matrix
sparse matrix to be stored
name: str
node prefix in HDF5 hierarchy
filename: str
HDF5 filename
"""
assert(M.__class__ == sparse.csr.csr_matrix), 'M must be a csr matrix'
with tables.open_file(filename, 'a') as f:
for attribute in ('data', 'indices', 'indptr', 'shape'):
full_name = f'{name}_{attribute}'
# remove existing nodes
try:
n = getattr(f.root, full_name)
n._f_remove()
except AttributeError:
pass
# add nodes
arr = np.array(getattr(M, attribute))
atom = tables.Atom.from_dtype(arr.dtype)
ds = f.create_carray(f.root, full_name, atom, arr.shape)
ds[:] = arr
def load_sparse_mat(name, filename='store.h5'):
"""
Load a csr matrix from HDF5
Parameters
----------
name: str
node prefix in HDF5 hierarchy
filename: str
HDF5 filename
Returns
----------
M : scipy.sparse.csr.csr_matrix
loaded sparse matrix
"""
with tables.open_file(filename) as f:
# get nodes
attributes = []
for attribute in ('data', 'indices', 'indptr', 'shape'):
attributes.append(getattr(f.root, f'{name}_{attribute}').read())
# construct sparse matrix
M = sparse.csr_matrix(tuple(attributes[:3]), shape=attributes[3])
return M