In python, how can I reference previous row and calculate something against it? Specifically, I am working with dataframes
in pandas
- I have a da
I think you want to do something like this:
In [26]: data
Out[26]:
Date Close Adj Close
251 2011-01-03 147.48 143.25
250 2011-01-04 147.64 143.41
249 2011-01-05 147.05 142.83
248 2011-01-06 148.66 144.40
247 2011-01-07 147.93 143.69
In [27]: data.set_index('Date').diff()
Out[27]:
Close Adj Close
Date
2011-01-03 NaN NaN
2011-01-04 0.16 0.16
2011-01-05 -0.59 -0.58
2011-01-06 1.61 1.57
2011-01-07 -0.73 -0.71
To calculate difference of one column. Here is what you can do.
df=
A B
0 10 56
1 45 48
2 26 48
3 32 65
We want to compute row difference in A only and want to consider the rows which are less than 15.
df['A_dif'] = df['A'].diff()
df=
A B A_dif
0 10 56 Nan
1 45 48 35
2 26 48 19
3 32 65 6
df = df[df['A_dif']<15]
df=
A B A_dif
0 10 56 Nan
3 32 65 6
I don't know pandas, and I'm pretty sure it has something specific for this; however, I'll give you the pure-Python solution, that might be of some help even if you need to use pandas:
import csv
import urllib
# This basically retrieves the CSV files and loads it in a list, converting
# All numeric values to floats
url='http://ichart.finance.yahoo.com/table.csv?s=IBM&a=00&b=1&c=2011&d=11&e=31&f=2011&g=d&ignore=.csv'
reader = csv.reader(urllib.urlopen(url), delimiter=',')
# We sort the output list so the records are ordered by date
cleaned = sorted([[r[0]] + map(float, r[1:]) for r in list(reader)[1:]])
for i, row in enumerate(cleaned): # enumerate() yields two-tuples: (<id>, <item>)
# The try..except here is to skip the IndexError for line 0
try:
# This will calculate difference of each numeric field with the same field
# in the row before this one
print row[0], [(row[j] - cleaned[i-1][j]) for j in range(1, 7)]
except IndexError:
pass