I am trying to implement a low pass filter in Java. My requirement is very simple,I have to eliminate signals beyond a particular frequency (Single dimension). Looks like Bu
I adopted this from http://www.dspguide.com/ I'm quite new to java, so it's not pretty, but it works
/*
* To change this license header, choose License Headers in Project Properties.
* To change this template file, choose Tools | Templates
* and open the template in the editor.
*/
package SoundCruncher;
import java.util.ArrayList;
/**
*
* @author 2sloth
* filter routine from "The scientist and engineer's guide to DSP" Chapter 20
* filterOrder can be any even number between 2 & 20
* cutoffFreq must be smaller than half the samplerate
* filterType: 0=lowPass 1=highPass
* ripplePercent is amount of ripple in Chebyshev filter (0-29) (0=butterworth)
*/
public class Filtering {
double[] filterSignal(ArrayList<Float> signal, double sampleRate ,double cutoffFreq, double filterOrder, int filterType, double ripplePercent) {
double[][] recursionCoefficients = new double[22][2];
// Generate double array for ease of coding
double[] unfilteredSignal = new double[signal.size()];
for (int i=0; i<signal.size(); i++) {
unfilteredSignal[i] = signal.get(i);
}
double cutoffFraction = cutoffFreq/sampleRate; // convert cut-off frequency to fraction of sample rate
System.out.println("Filtering: cutoffFraction: " + cutoffFraction);
//ButterworthFilter(0.4,6,ButterworthFilter.Type highPass);
double[] coeffA = new double[22]; //a coeffs
double[] coeffB = new double[22]; //b coeffs
double[] tA = new double[22];
double[] tB = new double[22];
coeffA[2] = 1;
coeffB[2] = 1;
// calling subroutine
for (int i=1; i<filterOrder/2; i++) {
double[] filterParameters = MakeFilterParameters(cutoffFraction, filterType, ripplePercent, filterOrder, i);
for (int j=0; j<coeffA.length; j++){
tA[j] = coeffA[j];
tB[j] = coeffB[j];
}
for (int j=2; j<coeffA.length; j++){
coeffA[j] = filterParameters[0]*tA[j]+filterParameters[1]*tA[j-1]+filterParameters[2]*tA[j-2];
coeffB[j] = tB[j]-filterParameters[3]*tB[j-1]-filterParameters[4]*tB[j-2];
}
}
coeffB[2] = 0;
for (int i=0; i<20; i++){
coeffA[i] = coeffA[i+2];
coeffB[i] = -coeffB[i+2];
}
// adjusting coeffA and coeffB for high/low pass filter
double sA = 0;
double sB = 0;
for (int i=0; i<20; i++){
if (filterType==0) sA = sA+coeffA[i];
if (filterType==0) sB = sB+coeffB[i];
if (filterType==1) sA = sA+coeffA[i]*Math.pow(-1,i);
if (filterType==1) sB = sB+coeffA[i]*Math.pow(-1,i);
}
// applying gain
double gain = sA/(1-sB);
for (int i=0; i<20; i++){
coeffA[i] = coeffA[i]/gain;
}
for (int i=0; i<22; i++){
recursionCoefficients[i][0] = coeffA[i];
recursionCoefficients[i][1] = coeffB[i];
}
double[] filteredSignal = new double[signal.size()];
double filterSampleA = 0;
double filterSampleB = 0;
// loop for applying recursive filter
for (int i= (int) Math.round(filterOrder); i<signal.size(); i++){
for(int j=0; j<filterOrder+1; j++) {
filterSampleA = filterSampleA+coeffA[j]*unfilteredSignal[i-j];
}
for(int j=1; j<filterOrder+1; j++) {
filterSampleB = filterSampleB+coeffB[j]*filteredSignal[i-j];
}
filteredSignal[i] = filterSampleA+filterSampleB;
filterSampleA = 0;
filterSampleB = 0;
}
return filteredSignal;
}
/* pi=3.14...
cutoffFreq=fraction of samplerate, default 0.4 FC
filterType: 0=LowPass 1=HighPass LH
rippleP=ripple procent 0-29 PR
iterateOver=1 to poles/2 P%
*/
// subroutine called from "filterSignal" method
double[] MakeFilterParameters(double cutoffFraction, int filterType, double rippleP, double numberOfPoles, int iteration) {
double rp = -Math.cos(Math.PI/(numberOfPoles*2)+(iteration-1)*(Math.PI/numberOfPoles));
double ip = Math.sin(Math.PI/(numberOfPoles*2)+(iteration-1)*Math.PI/numberOfPoles);
System.out.println("MakeFilterParameters: ripplP:");
System.out.println("cutoffFraction filterType rippleP numberOfPoles iteration");
System.out.println(cutoffFraction + " " + filterType + " " + rippleP + " " + numberOfPoles + " " + iteration);
if (rippleP != 0){
double es = Math.sqrt(Math.pow(100/(100-rippleP),2)-1);
// double vx1 = 1/numberOfPoles;
// double vx2 = 1/Math.pow(es,2)+1;
// double vx3 = (1/es)+Math.sqrt(vx2);
// System.out.println("VX's: ");
// System.out.println(vx1 + " " + vx2 + " " + vx3);
// double vx = vx1*Math.log(vx3);
double vx = (1/numberOfPoles)*Math.log((1/es)+Math.sqrt((1/Math.pow(es,2))+1));
double kx = (1/numberOfPoles)*Math.log((1/es)+Math.sqrt((1/Math.pow(es,2))-1));
kx = (Math.exp(kx)+Math.exp(-kx))/2;
rp = rp*((Math.exp(vx)-Math.exp(-vx))/2)/kx;
ip = ip*((Math.exp(vx)+Math.exp(-vx))/2)/kx;
System.out.println("MakeFilterParameters (rippleP!=0):");
System.out.println("es vx kx rp ip");
System.out.println(es + " " + vx*100 + " " + kx + " " + rp + " " + ip);
}
double t = 2*Math.tan(0.5);
double w = 2*Math.PI*cutoffFraction;
double m = Math.pow(rp, 2)+Math.pow(ip,2);
double d = 4-4*rp*t+m*Math.pow(t,2);
double x0 = Math.pow(t,2)/d;
double x1 = 2*Math.pow(t,2)/d;
double x2 = Math.pow(t,2)/d;
double y1 = (8-2*m*Math.pow(t,2))/d;
double y2 = (-4-4*rp*t-m*Math.pow(t,2))/d;
double k = 0;
if (filterType==1) {
k = -Math.cos(w/2+0.5)/Math.cos(w/2-0.5);
}
if (filterType==0) {
k = -Math.sin(0.5-w/2)/Math.sin(w/2+0.5);
}
d = 1+y1*k-y2*Math.pow(k,2);
double[] filterParameters = new double[5];
filterParameters[0] = (x0-x1*k+x2*Math.pow(k,2))/d; //a0
filterParameters[1] = (-2*x0*k+x1+x1*Math.pow(k,2)-2*x2*k)/d; //a1
filterParameters[2] = (x0*Math.pow(k,2)-x1*k+x2)/d; //a2
filterParameters[3] = (2*k+y1+y1*Math.pow(k,2)-2*y2*k)/d; //b1
filterParameters[4] = (-(Math.pow(k,2))-y1*k+y2)/d; //b2
if (filterType==1) {
filterParameters[1] = -filterParameters[1];
filterParameters[3] = -filterParameters[3];
}
// for (double number: filterParameters){
// System.out.println("MakeFilterParameters: " + number);
// }
return filterParameters;
}
}