I am trying to access the index of a row in a function applied across an entire DataFrame
in Pandas. I have something like this:
df = pandas.Dat
To access the index in this case you access the name
attribute:
In [182]:
df = pd.DataFrame([[1,2,3],[4,5,6]], columns=['a','b','c'])
def rowFunc(row):
return row['a'] + row['b'] * row['c']
def rowIndex(row):
return row.name
df['d'] = df.apply(rowFunc, axis=1)
df['rowIndex'] = df.apply(rowIndex, axis=1)
df
Out[182]:
a b c d rowIndex
0 1 2 3 7 0
1 4 5 6 34 1
Note that if this is really what you are trying to do that the following works and is much faster:
In [198]:
df['d'] = df['a'] + df['b'] * df['c']
df
Out[198]:
a b c d
0 1 2 3 7
1 4 5 6 34
In [199]:
%timeit df['a'] + df['b'] * df['c']
%timeit df.apply(rowIndex, axis=1)
10000 loops, best of 3: 163 µs per loop
1000 loops, best of 3: 286 µs per loop
EDIT
Looking at this question 3+ years later, you could just do:
In[15]:
df['d'],df['rowIndex'] = df['a'] + df['b'] * df['c'], df.index
df
Out[15]:
a b c d rowIndex
0 1 2 3 7 0
1 4 5 6 34 1
but assuming it isn't as trivial as this, whatever your rowFunc
is really doing, you should look to use the vectorised functions, and then use them against the df index:
In[16]:
df['newCol'] = df['a'] + df['b'] + df['c'] + df.index
df
Out[16]:
a b c d rowIndex newCol
0 1 2 3 7 0 6
1 4 5 6 34 1 16
To answer the original question: yes, you can access the index value of a row in apply()
. It is available under the key name
and requires that you specify axis=1
(because the lambda processes the columns of a row and not the rows of a column).
Working example (pandas 0.23.4):
>>> import pandas as pd
>>> df = pd.DataFrame([[1,2,3],[4,5,6]], columns=['a','b','c'])
>>> df.set_index('a', inplace=True)
>>> df
b c
a
1 2 3
4 5 6
>>> df['index_x10'] = df.apply(lambda row: 10*row.name, axis=1)
>>> df
b c index_x10
a
1 2 3 10
4 5 6 40
Either:
row.name
inside the apply(..., axis=1)
call:df = pandas.DataFrame([[1,2,3],[4,5,6]], columns=['a','b','c'], index=['x','y'])
a b c
x 1 2 3
y 4 5 6
df.apply(lambda row: row.name, axis=1)
x x
y y
iterrows()
(slower)DataFrame.iterrows() allows you to iterate over rows, and access their index:
for idx, row in df.iterrows():
...