I am trying to triangulate some points with OpenCV and I found this cv::triangulatePoints()
function. The problem is that there is almost no documentation or ex
I tried cv::triangulatePoints, but somehow it calculates garbage. I was forced to implement a linear triangulation method manually, which returns a 4x1 matrix for the triangulated 3D point:
Mat triangulate_Linear_LS(Mat mat_P_l, Mat mat_P_r, Mat warped_back_l, Mat warped_back_r)
{
Mat A(4,3,CV_64FC1), b(4,1,CV_64FC1), X(3,1,CV_64FC1), X_homogeneous(4,1,CV_64FC1), W(1,1,CV_64FC1);
W.at<double>(0,0) = 1.0;
A.at<double>(0,0) = (warped_back_l.at<double>(0,0)/warped_back_l.at<double>(2,0))*mat_P_l.at<double>(2,0) - mat_P_l.at<double>(0,0);
A.at<double>(0,1) = (warped_back_l.at<double>(0,0)/warped_back_l.at<double>(2,0))*mat_P_l.at<double>(2,1) - mat_P_l.at<double>(0,1);
A.at<double>(0,2) = (warped_back_l.at<double>(0,0)/warped_back_l.at<double>(2,0))*mat_P_l.at<double>(2,2) - mat_P_l.at<double>(0,2);
A.at<double>(1,0) = (warped_back_l.at<double>(1,0)/warped_back_l.at<double>(2,0))*mat_P_l.at<double>(2,0) - mat_P_l.at<double>(1,0);
A.at<double>(1,1) = (warped_back_l.at<double>(1,0)/warped_back_l.at<double>(2,0))*mat_P_l.at<double>(2,1) - mat_P_l.at<double>(1,1);
A.at<double>(1,2) = (warped_back_l.at<double>(1,0)/warped_back_l.at<double>(2,0))*mat_P_l.at<double>(2,2) - mat_P_l.at<double>(1,2);
A.at<double>(2,0) = (warped_back_r.at<double>(0,0)/warped_back_r.at<double>(2,0))*mat_P_r.at<double>(2,0) - mat_P_r.at<double>(0,0);
A.at<double>(2,1) = (warped_back_r.at<double>(0,0)/warped_back_r.at<double>(2,0))*mat_P_r.at<double>(2,1) - mat_P_r.at<double>(0,1);
A.at<double>(2,2) = (warped_back_r.at<double>(0,0)/warped_back_r.at<double>(2,0))*mat_P_r.at<double>(2,2) - mat_P_r.at<double>(0,2);
A.at<double>(3,0) = (warped_back_r.at<double>(1,0)/warped_back_r.at<double>(2,0))*mat_P_r.at<double>(2,0) - mat_P_r.at<double>(1,0);
A.at<double>(3,1) = (warped_back_r.at<double>(1,0)/warped_back_r.at<double>(2,0))*mat_P_r.at<double>(2,1) - mat_P_r.at<double>(1,1);
A.at<double>(3,2) = (warped_back_r.at<double>(1,0)/warped_back_r.at<double>(2,0))*mat_P_r.at<double>(2,2) - mat_P_r.at<double>(1,2);
b.at<double>(0,0) = -((warped_back_l.at<double>(0,0)/warped_back_l.at<double>(2,0))*mat_P_l.at<double>(2,3) - mat_P_l.at<double>(0,3));
b.at<double>(1,0) = -((warped_back_l.at<double>(1,0)/warped_back_l.at<double>(2,0))*mat_P_l.at<double>(2,3) - mat_P_l.at<double>(1,3));
b.at<double>(2,0) = -((warped_back_r.at<double>(0,0)/warped_back_r.at<double>(2,0))*mat_P_r.at<double>(2,3) - mat_P_r.at<double>(0,3));
b.at<double>(3,0) = -((warped_back_r.at<double>(1,0)/warped_back_r.at<double>(2,0))*mat_P_r.at<double>(2,3) - mat_P_r.at<double>(1,3));
solve(A,b,X,DECOMP_SVD);
vconcat(X,W,X_homogeneous);
return X_homogeneous;
}
the input parameters are two 3x4 camera projection matrices and a corresponding left/right pixel pair (x,y,w).
Alternatively you could use the method from Hartley & Zisserman implemented here: http://www.morethantechnical.com/2012/01/04/simple-triangulation-with-opencv-from-harley-zisserman-w-code/
1.- The method used is Least Squares. There are more complex algorithms than this one. Still it is the most common one, as the other methods may fail in some cases (i.e. some others fails if points are on plane or on infinite).
The method can be found in Multiple View Geometry in Computer Vision by Richard Hartley and Andrew Zisserman (p312)
2.-The usage:
cv::Mat pnts3D(1,N,CV_64FC4);
cv::Mat cam0pnts(1,N,CV_64FC2);
cv::Mat cam1pnts(1,N,CV_64FC2);
Fill the 2 chanel point Matrices with the points in images.
cam0
and cam1
are Mat3x4
camera matrices (intrinsic and extrinsic parameters). You can construct them by multiplying A*RT, where A is the intrinsic parameter matrix and RT the rotation translation 3x4 pose matrix.
cv::triangulatePoints(cam0,cam1,cam0pnts,cam1pnts,pnts3D);
NOTE: pnts3D
NEEDs to be a 4 channel 1xN cv::Mat
when defined, throws exception if not, but the result is a cv::Mat(4,N,cv_64FC1)
matrix. Really confusing, but it is the only way I didn't got an exception.
UPDATE: As of version 3.0 or possibly earlier, this is no longer true, and pnts3D
can also be of type Mat(4,N,CV_64FC1)
or may be left completely empty (as usual, it is created inside the function).
Thanks to Ander Biguri! His answer helped me a lot. But I always prefer the alternative with std::vector, I edited his solution to this:
std::vector<cv::Point2d> cam0pnts;
std::vector<cv::Point2d> cam1pnts;
// You fill them, both with the same size...
// You can pick any of the following 2 (your choice)
// cv::Mat pnts3D(1,cam0pnts.size(),CV_64FC4);
cv::Mat pnts3D(4,cam0pnts.size(),CV_64F);
cv::triangulatePoints(cam0,cam1,cam0pnts,cam1pnts,pnts3D);
So you just need to do emplace_back in the points. Main advantage: you do not need to know the size N
before start filling them. Unfortunately, there is no cv::Point4f, so pnts3D must be a cv::Mat...
A small addition to @Ander Biguri's answer. You should get your image points on a non-undistort
ed image, and invoke undistortPoints()
on the cam0pnts
and cam1pnts
, because cv::triangulatePoints
expects the 2D points in normalized coordinates (independent from the camera) and cam0
and cam1
should be only [R|t^T] matricies you do not need to multiple it with A.