We need to find pair of numbers in an array whose sum is equal to a given value.
A = {6,4,5,7,9,1,2}
Sum = 10 Then the pairs are - {6,4} ,
import itertools
list = [1, 1, 2, 3, 4, 5,]
uniquelist = set(list)
targetsum = 5
for n in itertools.combinations(uniquelist, 2):
if n[0] + n[1] == targetsum:
print str(n[0]) + " + " + str(n[1])
1 + 4
2 + 3
Shouldn't iterating from both ends just solve the problem?
Sort the array. And start comparing from both ends.
if((arr[start] + arr[end]) < sum) start++;
if((arr[start] + arr[end]) > sum) end--;
if((arr[start] + arr[end]) = sum) {print arr[start] "," arr[end] ; start++}
if(start > end) break;
Time Complexity O(nlogn)
https://github.com/clockzhong/findSumPairNumber
#! /usr/bin/env python
import sys
import os
import re
#get the number list
numberListStr=raw_input("Please input your number list (seperated by spaces)...\n")
numberList=[int(i) for i in numberListStr.split()]
print 'you have input the following number list:'
print numberList
#get the sum target value
sumTargetStr=raw_input("Please input your target number:\n")
sumTarget=int(sumTargetStr)
print 'your target is: '
print sumTarget
def generatePairsWith2IndexLists(list1, list2):
result=[]
for item1 in list1:
for item2 in list2:
#result.append([item1, item2])
result.append([item1+1, item2+1])
#print result
return result
def generatePairsWithOneIndexLists(list1):
result=[]
index = 0
while index< (len(list1)-1):
index2=index+1
while index2 < len(list1):
#result.append([list1[index],list1[index2]])
result.append([list1[index]+1,list1[index2]+1])
index2+=1
index+=1
return result
def getPairs(numList, target):
pairList=[]
candidateSlots=[] ##we have (target-1) slots
#init the candidateSlots list
index=0
while index < target+1:
candidateSlots.append(None)
index+=1
#generate the candidateSlots, contribute O(n) complexity
index=0
while index<len(numList):
if numList[index]<=target and numList[index]>=0:
#print 'index:',index
#print 'numList[index]:',numList[index]
#print 'len(candidateSlots):',len(candidateSlots)
if candidateSlots[numList[index]]==None:
candidateSlots[numList[index]]=[index]
else:
candidateSlots[numList[index]].append(index)
index+=1
#print candidateSlots
#generate the pairs list based on the candidateSlots[] we just created
#contribute O(target) complexity
index=0
while index<=(target/2):
if candidateSlots[index]!=None and candidateSlots[target-index]!=None:
if index!=(target-index):
newPairList=generatePairsWith2IndexLists(candidateSlots[index], candidateSlots[target-index])
else:
newPairList=generatePairsWithOneIndexLists(candidateSlots[index])
pairList+=newPairList
index+=1
return pairList
print getPairs(numberList, sumTarget)
I've successfully implemented one solution with Python under O(n+m) time and space cost. The "m" means the target value which those two numbers' sum need equal to. I believe this is the lowest cost could get. Erict2k used itertools.combinations, it'll also cost similar or higher time&space cost comparing my algorithm.
public void printPairsOfNumbers(int[] a, int sum){
//O(n2)
for (int i = 0; i < a.length; i++) {
for (int j = i+1; j < a.length; j++) {
if(sum - a[i] == a[j]){
//match..
System.out.println(a[i]+","+a[j]);
}
}
}
//O(n) time and O(n) space
Set<Integer> cache = new HashSet<Integer>();
cache.add(a[0]);
for (int i = 1; i < a.length; i++) {
if(cache.contains(sum - a[i])){
//match//
System.out.println(a[i]+","+(sum-a[i]));
}else{
cache.add(a[i]);
}
}
}
If numbers aren't very big, you can use fast fourier transform to multiply two polynomials and then in O(1) check if coefficient before x^(needed sum) sum is more than zero. O(n log n) total!
if its a sorted array and we need only pair of numbers and not all the pairs we can do it like this:
public void sums(int a[] , int x){ // A = 1,2,3,9,11,20 x=11
int i=0 , j=a.length-1;
while(i < j){
if(a[i] + a[j] == x) system.out.println("the numbers : "a[x] + " " + a[y]);
else if(a[i] + a[j] < x) i++;
else j--;
}
}
1 2 3 9 11 20 || i=0 , j=5 sum=21 x=11
1 2 3 9 11 20 || i=0 , j=4 sum=13 x=11
1 2 3 9 11 20 || i=0 , j=4 sum=11 x=11
END