An implicit question to newcomers to Scala seems to be: where does the compiler look for implicits? I mean implicit because the question never seems to get fully fo
I wanted to find out the precedence of the implicit parameter resolution, not just where it looks for, so I wrote a blog post revisiting implicits without import tax (and implicit parameter precedence again after some feedback).
Here's the list:
If at either stage we find more than one implicit, static overloading rule is used to resolve it.
Implicits in Scala refers to either a value that can be passed "automatically", so to speak, or a conversion from one type to another that is made automatically.
Speaking very briefly about the latter type, if one calls a method m
on an object o
of a class C
, and that class does not support method m
, then Scala will look for an implicit conversion from C
to something that does support m
. A simple example would be the method map
on String
:
"abc".map(_.toInt)
String
does not support the method map
, but StringOps
does, and there's an implicit conversion from String
to StringOps
available (see implicit def augmentString
on Predef
).
The other kind of implicit is the implicit parameter. These are passed to method calls like any other parameter, but the compiler tries to fill them in automatically. If it can't, it will complain. One can pass these parameters explicitly, which is how one uses breakOut
, for example (see question about breakOut
, on a day you are feeling up for a challenge).
In this case, one has to declare the need for an implicit, such as the foo
method declaration:
def foo[T](t: T)(implicit integral: Integral[T]) {println(integral)}
There's one situation where an implicit is both an implicit conversion and an implicit parameter. For example:
def getIndex[T, CC](seq: CC, value: T)(implicit conv: CC => Seq[T]) = seq.indexOf(value)
getIndex("abc", 'a')
The method getIndex
can receive any object, as long as there is an implicit conversion available from its class to Seq[T]
. Because of that, I can pass a String
to getIndex
, and it will work.
Behind the scenes, the compiler changes seq.IndexOf(value)
to conv(seq).indexOf(value)
.
This is so useful that there is syntactic sugar to write them. Using this syntactic sugar, getIndex
can be defined like this:
def getIndex[T, CC <% Seq[T]](seq: CC, value: T) = seq.indexOf(value)
This syntactic sugar is described as a view bound, akin to an upper bound (CC <: Seq[Int]
) or a lower bound (T >: Null
).
Another common pattern in implicit parameters is the type class pattern. This pattern enables the provision of common interfaces to classes which did not declare them. It can both serve as a bridge pattern -- gaining separation of concerns -- and as an adapter pattern.
The Integral
class you mentioned is a classic example of type class pattern. Another example on Scala's standard library is Ordering
. There's a library that makes heavy use of this pattern, called Scalaz.
This is an example of its use:
def sum[T](list: List[T])(implicit integral: Integral[T]): T = {
import integral._ // get the implicits in question into scope
list.foldLeft(integral.zero)(_ + _)
}
There is also syntactic sugar for it, called a context bound, which is made less useful by the need to refer to the implicit. A straight conversion of that method looks like this:
def sum[T : Integral](list: List[T]): T = {
val integral = implicitly[Integral[T]]
import integral._ // get the implicits in question into scope
list.foldLeft(integral.zero)(_ + _)
}
Context bounds are more useful when you just need to pass them to other methods that use them. For example, the method sorted
on Seq
needs an implicit Ordering
. To create a method reverseSort
, one could write:
def reverseSort[T : Ordering](seq: Seq[T]) = seq.sorted.reverse
Because Ordering[T]
was implicitly passed to reverseSort
, it can then pass it implicitly to sorted
.
When the compiler sees the need for an implicit, either because you are calling a method which does not exist on the object's class, or because you are calling a method that requires an implicit parameter, it will search for an implicit that will fit the need.
This search obey certain rules that define which implicits are visible and which are not. The following table showing where the compiler will search for implicits was taken from an excellent presentation about implicits by Josh Suereth, which I heartily recommend to anyone wanting to improve their Scala knowledge. It has been complemented since then with feedback and updates.
The implicits available under number 1 below has precedence over the ones under number 2. Other than that, if there are several eligible arguments which match the implicit parameter’s type, a most specific one will be chosen using the rules of static overloading resolution (see Scala Specification §6.26.3). More detailed information can be found in a question I link to at the end of this answer.
Let's give some examples for them:
implicit val n: Int = 5
def add(x: Int)(implicit y: Int) = x + y
add(5) // takes n from the current scope
import scala.collection.JavaConversions.mapAsScalaMap
def env = System.getenv() // Java map
val term = env("TERM") // implicit conversion from Java Map to Scala Map
def sum[T : Integral](list: List[T]): T = {
val integral = implicitly[Integral[T]]
import integral._ // get the implicits in question into scope
list.foldLeft(integral.zero)(_ + _)
}
Edit: It seems this does not have a different precedence. If you have some example that demonstrates a precedence distinction, please make a comment. Otherwise, don't rely on this one.
This is like the first example, but assuming the implicit definition is in a different file than its usage. See also how package objects might be used in to bring in implicits.
There are two object companions of note here. First, the object companion of the "source" type is looked into. For instance, inside the object Option
there is an implicit conversion to Iterable
, so one can call Iterable
methods on Option
, or pass Option
to something expecting an Iterable
. For example:
for {
x <- List(1, 2, 3)
y <- Some('x')
} yield (x, y)
That expression is translated by the compiler to
List(1, 2, 3).flatMap(x => Some('x').map(y => (x, y)))
However, List.flatMap
expects a TraversableOnce
, which Option
is not. The compiler then looks inside Option
's object companion and finds the conversion to Iterable
, which is a TraversableOnce
, making this expression correct.
Second, the companion object of the expected type:
List(1, 2, 3).sorted
The method sorted
takes an implicit Ordering
. In this case, it looks inside the object Ordering
, companion to the class Ordering
, and finds an implicit Ordering[Int]
there.
Note that companion objects of super classes are also looked into. For example:
class A(val n: Int)
object A {
implicit def str(a: A) = "A: %d" format a.n
}
class B(val x: Int, y: Int) extends A(y)
val b = new B(5, 2)
val s: String = b // s == "A: 2"
This is how Scala found the implicit Numeric[Int]
and Numeric[Long]
in your question, by the way, as they are found inside Numeric
, not Integral
.
If you have a method with an argument type A
, then the implicit scope of type A
will also be considered. By "implicit scope" I mean that all these rules will be applied recursively -- for example, the companion object of A
will be searched for implicits, as per the rule above.
Note that this does not mean the implicit scope of A
will be searched for conversions of that parameter, but of the whole expression. For example:
class A(val n: Int) {
def +(other: A) = new A(n + other.n)
}
object A {
implicit def fromInt(n: Int) = new A(n)
}
// This becomes possible:
1 + new A(1)
// because it is converted into this:
A.fromInt(1) + new A(1)
This is available since Scala 2.9.1.
This is required to make the type class pattern really work. Consider Ordering
, for instance: It comes with some implicits in its companion object, but you can't add stuff to it. So how can you make an Ordering
for your own class that is automatically found?
Let's start with the implementation:
class A(val n: Int)
object A {
implicit val ord = new Ordering[A] {
def compare(x: A, y: A) = implicitly[Ordering[Int]].compare(x.n, y.n)
}
}
So, consider what happens when you call
List(new A(5), new A(2)).sorted
As we saw, the method sorted
expects an Ordering[A]
(actually, it expects an Ordering[B]
, where B >: A
). There isn't any such thing inside Ordering
, and there is no "source" type on which to look. Obviously, it is finding it inside A
, which is a type argument of Ordering
.
This is also how various collection methods expecting CanBuildFrom
work: the implicits are found inside companion objects to the type parameters of CanBuildFrom
.
Note: Ordering
is defined as trait Ordering[T]
, where T
is a type parameter. Previously, I said that Scala looked inside type parameters, which doesn't make much sense. The implicit looked for above is Ordering[A]
, where A
is an actual type, not type parameter: it is a type argument to Ordering
. See section 7.2 of the Scala specification.
This is available since Scala 2.8.0.
I haven't actually seen examples of this. I'd be grateful if someone could share one. The principle is simple:
class A(val n: Int) {
class B(val m: Int) { require(m < n) }
}
object A {
implicit def bToString(b: A#B) = "B: %d" format b.m
}
val a = new A(5)
val b = new a.B(3)
val s: String = b // s == "B: 3"
I'm pretty sure this was a joke, but this answer might not be up-to-date. So don't take this question as being the final arbiter of what is happening, and if you do noticed it has gotten out-of-date, please inform me so that I can fix it.
EDIT
Related questions of interest: