R Plotting confidence bands with ggplot

后端 未结 1 1080
北海茫月
北海茫月 2020-11-29 18:27

I would like to create a confidence band for a model fitted with gls like this:

require(ggplot2)
require(nlme)

mp <-data.frame(year=c(1990:2010))

mp$wav         


        
相关标签:
1条回答
  • 2020-11-29 19:15
    require(ggplot2)
    require(nlme)
    
    set.seed(101)
    mp <-data.frame(year=1990:2010)
    N <- nrow(mp)
    
    mp <- within(mp,
             {
                 wav <- rnorm(N)*cos(2*pi*year)+rnorm(N)*sin(2*pi*year)+5
                 wow <- rnorm(N)*wav+rnorm(N)*wav^3
             })
    
    m01 <- gls(wow~poly(wav,3), data=mp, correlation = corARMA(p=1))
    

    Get fitted values (the same as m01$fitted)

    fit <- predict(m01)
    

    Normally we could use something like predict(...,se.fit=TRUE) to get the confidence intervals on the prediction, but gls doesn't provide this capability. We use a recipe similar to the one shown at http://glmm.wikidot.com/faq :

    V <- vcov(m01)
    X <- model.matrix(~poly(wav,3),data=mp)
    se.fit <- sqrt(diag(X %*% V %*% t(X)))
    

    Put together a "prediction frame":

    predframe <- with(mp,data.frame(year,wav,
                                    wow=fit,lwr=fit-1.96*se.fit,upr=fit+1.96*se.fit))
    

    Now plot with geom_ribbon

    (p1 <- ggplot(mp, aes(year, wow))+
        geom_point()+
        geom_line(data=predframe)+
        geom_ribbon(data=predframe,aes(ymin=lwr,ymax=upr),alpha=0.3))
    

    year vs wow

    It's easier to see that we got the right answer if we plot against wav rather than year:

    (p2 <- ggplot(mp, aes(wav, wow))+
        geom_point()+
        geom_line(data=predframe)+
        geom_ribbon(data=predframe,aes(ymin=lwr,ymax=upr),alpha=0.3))
    

    wav vs wow

    It would be nice to do the predictions with more resolution, but it's a little tricky to do this with the results of poly() fits -- see ?makepredictcall.

    0 讨论(0)
提交回复
热议问题