Here\'s the Python code to run an arbitrary command returning its stdout
data, or raise an exception on non-zero exit codes:
proc = subprocess.P
I had the problem that I wanted to terminate a multithreading subprocess if it took longer than a given timeout length. I wanted to set a timeout in Popen()
, but it did not work. Then, I realized that Popen().wait()
is equal to call()
and so I had the idea to set a timeout within the .wait(timeout=xxx)
method, which finally worked. Thus, I solved it this way:
import os
import sys
import signal
import subprocess
from multiprocessing import Pool
cores_for_parallelization = 4
timeout_time = 15 # seconds
def main():
jobs = [...YOUR_JOB_LIST...]
with Pool(cores_for_parallelization) as p:
p.map(run_parallel_jobs, jobs)
def run_parallel_jobs(args):
# Define the arguments including the paths
initial_terminal_command = 'C:\\Python34\\python.exe' # Python executable
function_to_start = 'C:\\temp\\xyz.py' # The multithreading script
final_list = [initial_terminal_command, function_to_start]
final_list.extend(args)
# Start the subprocess and determine the process PID
subp = subprocess.Popen(final_list) # starts the process
pid = subp.pid
# Wait until the return code returns from the function by considering the timeout.
# If not, terminate the process.
try:
returncode = subp.wait(timeout=timeout_time) # should be zero if accomplished
except subprocess.TimeoutExpired:
# Distinguish between Linux and Windows and terminate the process if
# the timeout has been expired
if sys.platform == 'linux2':
os.kill(pid, signal.SIGTERM)
elif sys.platform == 'win32':
subp.terminate()
if __name__ == '__main__':
main()
Here is Alex Martelli's solution as a module with proper process killing. The other approaches do not work because they do not use proc.communicate(). So if you have a process that produces lots of output, it will fill its output buffer and then block until you read something from it.
from os import kill
from signal import alarm, signal, SIGALRM, SIGKILL
from subprocess import PIPE, Popen
def run(args, cwd = None, shell = False, kill_tree = True, timeout = -1, env = None):
'''
Run a command with a timeout after which it will be forcibly
killed.
'''
class Alarm(Exception):
pass
def alarm_handler(signum, frame):
raise Alarm
p = Popen(args, shell = shell, cwd = cwd, stdout = PIPE, stderr = PIPE, env = env)
if timeout != -1:
signal(SIGALRM, alarm_handler)
alarm(timeout)
try:
stdout, stderr = p.communicate()
if timeout != -1:
alarm(0)
except Alarm:
pids = [p.pid]
if kill_tree:
pids.extend(get_process_children(p.pid))
for pid in pids:
# process might have died before getting to this line
# so wrap to avoid OSError: no such process
try:
kill(pid, SIGKILL)
except OSError:
pass
return -9, '', ''
return p.returncode, stdout, stderr
def get_process_children(pid):
p = Popen('ps --no-headers -o pid --ppid %d' % pid, shell = True,
stdout = PIPE, stderr = PIPE)
stdout, stderr = p.communicate()
return [int(p) for p in stdout.split()]
if __name__ == '__main__':
print run('find /', shell = True, timeout = 3)
print run('find', shell = True)
for python 2.6+, use gevent
from gevent.subprocess import Popen, PIPE, STDOUT
def call_sys(cmd, timeout):
p= Popen(cmd, shell=True, stdout=PIPE)
output, _ = p.communicate(timeout=timeout)
assert p.returncode == 0, p. returncode
return output
call_sys('./t.sh', 2)
# t.sh example
sleep 5
echo done
exit 1
Although I haven't looked at it extensively, this decorator I found at ActiveState seems to be quite useful for this sort of thing. Along with subprocess.Popen(..., close_fds=True)
, at least I'm ready for shell-scripting in Python.
Was just trying to write something simpler.
#!/usr/bin/python
from subprocess import Popen, PIPE
import datetime
import time
popen = Popen(["/bin/sleep", "10"]);
pid = popen.pid
sttime = time.time();
waittime = 3
print "Start time %s"%(sttime)
while True:
popen.poll();
time.sleep(1)
rcode = popen.returncode
now = time.time();
if [ rcode is None ] and [ now > (sttime + waittime) ] :
print "Killing it now"
popen.kill()