I have a city map of Moscow. We modified a Google Maps image with some artistic elements, but the relation between GPS coordinates and pixels remains the same.
You will have to implement the Google Maps API projection in your language. I have the C# source code for this:
public class GoogleMapsAPIProjection
{
private readonly double PixelTileSize = 256d;
private readonly double DegreesToRadiansRatio = 180d / Math.PI;
private readonly double RadiansToDegreesRatio = Math.PI / 180d;
private readonly PointF PixelGlobeCenter;
private readonly double XPixelsToDegreesRatio;
private readonly double YPixelsToRadiansRatio;
public GoogleMapsAPIProjection(double zoomLevel)
{
var pixelGlobeSize = this.PixelTileSize * Math.Pow(2d, zoomLevel);
this.XPixelsToDegreesRatio = pixelGlobeSize / 360d;
this.YPixelsToRadiansRatio = pixelGlobeSize / (2d * Math.PI);
var halfPixelGlobeSize = Convert.ToSingle(pixelGlobeSize / 2d);
this.PixelGlobeCenter = new PointF(
halfPixelGlobeSize, halfPixelGlobeSize);
}
public PointF FromCoordinatesToPixel(PointF coordinates)
{
var x = Math.Round(this.PixelGlobeCenter.X
+ (coordinates.X * this.XPixelsToDegreesRatio));
var f = Math.Min(
Math.Max(
Math.Sin(coordinates.Y * RadiansToDegreesRatio),
-0.9999d),
0.9999d);
var y = Math.Round(this.PixelGlobeCenter.Y + .5d *
Math.Log((1d + f) / (1d - f)) * -this.YPixelsToRadiansRatio);
return new PointF(Convert.ToSingle(x), Convert.ToSingle(y));
}
public PointF FromPixelToCoordinates(PointF pixel)
{
var longitude = (pixel.X - this.PixelGlobeCenter.X) /
this.XPixelsToDegreesRatio;
var latitude = (2 * Math.Atan(Math.Exp(
(pixel.Y - this.PixelGlobeCenter.Y) / -this.YPixelsToRadiansRatio))
- Math.PI / 2) * DegreesToRadiansRatio;
return new PointF(
Convert.ToSingle(latitude),
Convert.ToSingle(longitude));
}
}
Source:
http://code.google.com/p/geographical-dot-net/source/browse/trunk/GeographicalDotNet/GeographicalDotNet/Projection/GoogleMapsAPIProjection.cs
You need formulas to convert latitude and longitude to rectangular coordinates. There are a great number to choose from and each will distort the map in a different way. Wolfram MathWorld has a good collection:
http://mathworld.wolfram.com/MapProjection.html
Follow the "See Also" links.
The key to all of this is understanding map projections. As others have pointed out, the cause of the distortion is the fact that the spherical (or more accurately ellipsoidal) earth is projected onto a plane.
In order to achieve your goal, you first must know two things about your data:
I'm assuming your data is in these coordinate systems.
The spherical Mercator projection defines a coordinate pair in meters, for the surface of the earth. This means, for every lat/long coordinate there is a matching meter/meter coordinate. This enables you to do the conversion using the following procedure:
In order to go from a WGS84 point to a pixel on the image, the procedure is now:
You can use the proj4js library like this:
// include the library
<script src="lib/proj4js-combined.js"></script> //adjust the path for your server
//or else use the compressed version
// creating source and destination Proj4js objects
// once initialized, these may be re-used as often as needed
var source = new Proj4js.Proj('EPSG:4326'); //source coordinates will be in Longitude/Latitude, WGS84
var dest = new Proj4js.Proj('EPSG:3785'); //destination coordinates in meters, global spherical mercators projection, see http://spatialreference.org/ref/epsg/3785/
// transforming point coordinates
var p = new Proj4js.Point(-76.0,45.0); //any object will do as long as it has 'x' and 'y' properties
Proj4js.transform(source, dest, p); //do the transformation. x and y are modified in place
//p.x and p.y are now EPSG:3785 in meters
You may have a look at code that used on gheat, it's ported from js to python.