I have a Pandas Dataframe as shown below:
1 2 3
0 a NaN read
1 b l unread
2 c NaN read
I want to remove the
If you are reading the dataframe from a file (say CSV or Excel) then use :
df.read_csv(path , na_filter=False)
df.read_excel(path , na_filter=False)
This will automatically consider the empty fields as empty strings ''
If you already have the dataframe
df = df.replace(np.nan, '', regex=True)
df = df.fillna('')
using keep_default_na=False
should help you:
df = pd.read_csv(filename, keep_default_na=False)
Try this,
add inplace=True
import numpy as np
df.replace(np.NaN, ' ', inplace=True)
I tried with one column of string values with nan.
To remove the nan and fill the empty string:
df.columnname.replace(np.nan,'',regex = True)
To remove the nan and fill some values:
df.columnname.replace(np.nan,'value',regex = True)
I tried df.iloc also. but it needs the index of the column. so you need to look into the table again. simply the above method reduced one step.
Use a formatter, if you only want to format it so that it renders nicely when printed. Just use the df.to_string(... formatters
to define custom string-formatting, without needlessly modifying your DataFrame or wasting memory:
df = pd.DataFrame({
'A': ['a', 'b', 'c'],
'B': [np.nan, 1, np.nan],
'C': ['read', 'unread', 'read']})
print df.to_string(
formatters={'B': lambda x: '' if pd.isnull(x) else '{:.0f}'.format(x)})
To get:
A B C
0 a read
1 b 1 unread
2 c read
import numpy as np
df1 = df.replace(np.nan, '', regex=True)
This might help. It will replace all NaNs with an empty string.