Many people seem to be under the impression that once you free memory, it's instantly returned to the operating system and can be used by other programs.
This isn't true. Operating systems commonly manage memory in 4KiB pages. malloc
and other sorts of memory management get pages from the OS and sub-manage them as they see fit. It's quite likely that free()
will not return pages to the operating system, under the assumption that your program will malloc more memory later.
I'm not saying that free()
never returns memory to the operating system. It can happen, particularly if you are freeing large stretches of memory. But there's no guarantee.
The important fact: If you don't free memory that you no longer need, further mallocs are guaranteed to consume even more memory. But if you free first, malloc might re-use the freed memory instead.
What does this mean in practice? It means that if you know your program isn't going to require any more memory from now on (for instance it's in the cleanup phase), freeing memory is not so important. However if the program might allocate more memory later, you should avoid memory leaks - particularly ones that can occur repeatedly.
Also see this comment for more details about why freeing memory just before termination is bad.
A commenter didn't seem to understand that calling free()
does not automatically allow other programs to use the freed memory. But that's the entire point of this answer!
So, to convince people, I will demonstrate an example where free() does very little good. To make the math easy to follow, I will pretend that the OS manages memory in 4000 byte pages.
Suppose you allocate ten thousand 100-byte blocks (for simplicity I'll ignore the extra memory that would be required to manage these allocations). This consumes 1MB, or 250 pages. If you then free 9000 of these blocks at random, you're left with just 1000 blocks - but they're scattered all over the place. Statistically, about 5 of the pages will be empty. The other 245 will each have at least one allocated block in them. That amounts to 980KB of memory, that cannot possibly be reclaimed by the operating system - even though you now only have 100KB allocated!
On the other hand, you can now malloc() 9000 more blocks without increasing the amount of memory your program is tying up.
Even when free()
could technically return memory to the OS, it may not do so. free()
needs to achieve a balance between operating quickly and saving memory. And besides, a program that has already allocated a lot of memory and then freed it is likely to do so again. A web server needs to handle request after request after request - it makes sense to keep some "slack" memory available so you don't need to ask the OS for memory all the time.