I have a datetime column as below -
>>> df[\'ACC_DATE\'].head(2)
538 2006-04-07
550 2006-04-12
Name: ACC_DATE, dtype: datetime64[ns]
You can use DateOffset to achieve this:
In[88]:
df['NEW_DATE'] = df['ACC_DATE'] - pd.DateOffset(years=1)
df
Out[88]:
ACC_DATE NEW_DATE
index
538 2006-04-07 2005-04-07
550 2006-04-12 2005-04-12
You could use pd.Timedelta:
df["NEW_DATE"] = df["ACC_DATE"] - pd.Timedelta(days=365)
Or replace:
df["NEW_DATE"] = df["ACC_DATE"].apply(lambda x: x.replace(year=x.year - 1))
But neither will catch leap years so you could use dateutil.relativedelta
:
from dateutil.relativedelta import relativedelta
df["NEW_DATE"] = df["ACC_DATE"].apply(lambda x: x - relativedelta(years=1))
Use DateOffset:
df["NEW_DATE"] = df["ACC_DATE"] - pd.offsets.DateOffset(years=1)
print (df)
ACC_DATE NEW_DATE
index
538 2006-04-07 2005-04-07
550 2006-04-12 2005-04-12