Cross Platform Floating Point Consistency

前端 未结 4 811
隐瞒了意图╮
隐瞒了意图╮ 2020-11-29 09:26

I\'m developing a cross-platform game which plays over a network using a lockstep model. As a brief overview, this means that only inputs are communicated, and all game log

相关标签:
4条回答
  • 2020-11-29 09:49

    1.) In principle cross platform, OS, hardware compatibility is possible but in practice it's a pain.

    In general your results will depend on which OS you use, which compiler, and which hardware you use. Change any one of those and your results might change. You have to test all changes. I use Qt Creator and qmake (cmake is probably better but qmake works for me) and test my code in MSVC on Windows, GCC on Linux, and MinGW-w64 on Windows. I test both 32-bit and 64-bit. This has to be done whenever code changes.

    2.) and 3.) In terms of floating point some compilers will use x87 instead of SSE in 32-bit mode. See this as an example of the consequences of when that happens Why a number crunching program starts running much slower when diverges into NaNs? All 64-bit systems have SSE so I think most use SSE/AVX in 64-bit otherwise, e.g. in 32 bit mode, you might need to force SSE with something like -mfpmath=sse and -msse2.

    But if you want a more compatible version of GCC on windows then I would used MingGW-w64 for 32-bit (aka MinGW-w32) or MinGW-w64 in 64bit . This is not the same thing as MinGW (aka mingw32). The projects have diverged. MinGW depends on MSVCRT (the MSVC C runtime library) and MinGW-w64 does not. The Qt project has a pretty good description of MinGW-w64 and installiation. http://qt-project.org/wiki/MinGW-64-bit

    You might also want to consider writing a CPU dispatcher cpu dispatcher for visual studio for AVX and SSE.

    0 讨论(0)
  • 2020-11-29 09:56

    Next to your concerns on determinism, I have another remark: if you are worried about calculation consistency on a distributed system, you may have a design issue.

    You could think about your application as a bunch of nodes, each responsible for their own calculations. If information about another node is needed, it should sent to you by that node.

    0 讨论(0)
  • 2020-11-29 10:11

    Cross-platform and cross-compiler consistency is of course possible. Anything is possible given enough knowledge and time! But it might be very hard, or very time-consuming, or indeed impractical.

    Here are the problems I can foresee, in no particular order:

    1. Remember that even an extremely small error of plus-or-minus 1/10^15 can blow up to become significant (you multiply that number with that error margin with one billion, and now you have a plus-or-minus 0.000001 error which might be significant.) These errors can accumulate over time, over many frames, until you have a desynchronized simulation. Or they can manifest when you compare values (even naively using "epsilons" in floating-point comparisons might not help; only displace or delay the manifestation.)

    2. The above problem is not unique to distributed deterministic simulations (like yours.) The touch on the issue of "numerical stability", which is a difficult and often neglected subject.

    3. Different compiler optimization switches, and different floating-point behavior determination switches might lead to the compiler generate slightly different sequences of CPU instructions for the same statements. Obviously these must be the same across compilations, using the same exact compilers, or the generated code must be rigorously compared and verified.

    4. 32-bit and 64-bit programs (note: I'm saying programs and not CPUs) will probably exhibit slightly different floating-point behaviors. By default, 32-bit programs cannot rely on anything more advanced than x87 instruction set from the CPU (no SSE, SSE2, AVX, etc.) unless you specify this on the compiler command line (or use the intrinsics/inline assembly instructions in your code.) On the other hand, a 64-bit program is guaranteed to run on a CPU with SSE2 support, so the compiler will use those instructions by default (again, unless overridden by the user.) While x87 and SSE2 float datatypes and operations on them are similar, they are - AFAIK - not identical. Which will lead to inconsistencies in the simulation if one program uses one instruction set and another program uses another.

    5. The x87 instruction set includes a "control word" register, which contain flags that control some aspects of floating-point operations (e.g. exact rounding behavior, etc.) This is a runtime thing, and your program can do one set of calculations, then change this register, and after that do the exact same calculations and get a different result. Obviously, this register must be checked and handled and kept identical on the different machines. It is possible for the compiler (or the libraries you use in your program) to generate code that changes these flags at runtime inconsistently across the programs.

    6. Again, in case of the x87 instruction set, Intel and AMD have historically implemented things a little differently. For example, one vendor's CPU might internally do some calculations using more bits (and therefore arrive at a more accurate result) that the other, which means that if you happen to run on two different CPUs (both x86) from two different vendors, the results of simple calculations might not be the same. I don't know how and under what circumstances these higher accuracy calculations are enabled and whether they happen under normal operating conditions or you have to ask for them specifically, but I do know these discrepancies exist.

    7. Random numbers and generating them consistently and deterministically across programs has nothing to do with floating-point consistency. It's important and source of many bugs, but in the end it's just a few more bits of state that you have to keep synched.

    And here are a couple of techniques that might help:

    1. Some projects use "fixed-point" numbers and fixed-point arithmetic to avoid rounding errors and general unpredictability of floating-point numbers. Read the Wikipedia article for more information and external links.

    2. In one of my own projects, during development, I used to hash all the relevant state (including a lot of floating-point numbers) in all the instances of the game and send the hash across the network each frame to make sure even one bit of that state wasn't different on different machines. This also helped with debugging, where instead of trusting my eyes to see when and where inconsistencies existed (which wouldn't tell me where they originated, anyways) I would know the instant some part of the state of the game on one machine started diverging from the others, and know exactly what it was (if the hash check failed, I would stop the simulation and start comparing the whole state.)
      This feature was implemented in that codebase from the beginning, and was used only during the development process to help with debugging (because it had performance and memory costs.)

    Update (in answer to first comment below): As I said in point 1, and others have said in other answers, that doesn't guarantee anything. If you do that, you might decrease the probability and frequency of an inconsistency occurring, but the likelihood doesn't become zero. If you don't analyze what's happening in your code and the possible sources of problems carefully and systematically, it is still possible to run into errors no matter how much you "round off" your numbers.

    For example, if you have two numbers (e.g. as results of two calculations that were supposed to produce identical results) that are 1.111499999 and 1.111500001 and you round them to three decimal places, they become 1.111 and 1.112 respectively. The original numbers' difference was only 2E-9, but it has now become 1E-3. In fact, you have increased your error 500'000 times. And still they are not equal even with the rounding. You've exacerbated the problem.

    True, this doesn't happen much, and the examples I gave are two unlucky numbers to get in this situation, but it is still possible to find yourself with these kinds of numbers. And when you do, you're in trouble. The only sure-fire solution, even if you use fixed-point arithmetic or whatever, is to do rigorous and systematic mathematical analysis of all your possible problem areas and prove that they will remain consistent across programs.

    Short of that, for us mere mortals, you need to have a water-tight way to monitor the situation and find exactly when and how the slightest discrepancies occur, to be able to solve the problem after the fact (instead of relying on your eyes to see problems in game animation or object movement or physical behavior.)

    0 讨论(0)
  • 2020-11-29 10:14
    1. No, not in practice. For example, sin() might come from a library or from a compiler intrinsic, and differ in rounding. Sure, that's only one bit, but that's already out of sync. And that one bit error may add up over time, so even an imprecise comparison may not be sufficient.
    2. N/A
    3. You can't reduce FP precision for a given type, and I don't even see how it would help you. You'd turn the occasional 1E-6 difference into an occasional 1E-4 difference.
    0 讨论(0)
提交回复
热议问题