General method to find submatrix in matlab matrix

前端 未结 3 1910
臣服心动
臣服心动 2020-11-29 08:50

I am looking for a \'good\' way to find a matrix (pattern) in a larger matrix (arbitrary number of dimensions).

Example:

total = rand(3,4,5);
sub = t         


        
相关标签:
3条回答
  • 2020-11-29 09:30

    Here is low-performance, but (supposedly) arbitrary dimensional function. It uses find to create a list of (linear) indices of potential matching positions in total and then just checks if the appropriately sized subblock of total matches sub.

    function loc = matrixFind(total, sub)
    %matrixFind find position of array in another array
    
        % initialize result
        loc = [];
    
        % pre-check: do all elements of sub exist in total?
        elements_in_both = intersect(sub(:), total(:));
        if numel(elements_in_both) < numel(unique(sub))
            % if not, return nothing
            return
        end
    
        % select a pivot element
        % Improvement: use least common element in total for less iterations
        pivot_element = sub(1);
    
        % determine linear index of all occurences of pivot_elemnent in total
        starting_positions = find(total == pivot_element);
    
        % prepare cell arrays for variable length subscript vectors
        [subscripts, subscript_ranges] = deal(cell([1, ndims(total)]));
    
    
        for k = 1:length(starting_positions)
            % fill subscript vector for starting position
            [subscripts{:}] = ind2sub(size(total), starting_positions(k));
    
            % add offsets according to size of sub per dimension
            for m = 1:length(subscripts)
                subscript_ranges{m} = subscripts{m}:subscripts{m} + size(sub, m) - 1;
            end
    
            % is subblock of total equal to sub
            if isequal(total(subscript_ranges{:}), sub)
                loc = [loc; cell2mat(subscripts)]; %#ok<AGROW>
            end
        end
    end
    
    0 讨论(0)
  • 2020-11-29 09:33

    This is based on doing all possible shifts of the original matrix total and comparing the upper-leftmost-etc sub-matrix of the shifted total with the sought pattern subs. Shifts are generated using strings, and are applied using circshift.

    Most of the work is done vectorized. Only one level of loops is used.

    The function finds all matchings, not just the first. For example:

    >> total = ones(3,4,5,6);
    >> sub = ones(3,3,5,6);
    >> matrixFind(total, sub)
    ans =
    
         1     1     1     1
         1     2     1     1
    

    Here is the function:

    function sol = matrixFind(total, sub)
    
    nd = ndims(total);
    sizt = size(total).';
    max_sizt = max(sizt);
    sizs = [ size(sub) ones(1,nd-ndims(sub)) ].'; % in case there are
    % trailing singletons
    
    if any(sizs>sizt)
        error('Incorrect dimensions')
    end
    
    allowed_shift = (sizt-sizs);
    max_allowed_shift = max(allowed_shift);
    if max_allowed_shift>0
        shifts = dec2base(0:(max_allowed_shift+1)^nd-1,max_allowed_shift+1).'-'0';
        filter = all(bsxfun(@le,shifts,allowed_shift));
        shifts = shifts(:,filter); % possible shifts of matrix "total", along 
        % all dimensions
    else
        shifts = zeros(nd,1);
    end
    
    for dim = 1:nd
        d{dim} = 1:sizt(dim); % vectors with subindices per dimension
    end
    g = cell(1,nd);
    [g{:}] = ndgrid(d{:}); % grid of subindices per dimension
    gc = cat(nd+1,g{:}); % concatenated grid
    accept = repmat(permute(sizs,[2:nd+1 1]), [sizt; 1]); % acceptable values
    % of subindices in order to compare with matrix "sub"
    ind_filter = find(all(gc<=accept,nd+1));
    
    sol = [];
    for shift = shifts
        total_shifted = circshift(total,-shift);
        if all(total_shifted(ind_filter)==sub(:))
            sol = [ sol; shift.'+1 ];
        end
    end
    
    0 讨论(0)
  • 2020-11-29 09:35

    For an arbitrary number of dimensions, you might try convn.

    C = convn(total,reshape(sub(end:-1:1),size(sub)),'valid'); % flip dimensions of sub to be correlation
    [~,indmax] = max(C(:));
    % thanks to Eitan T for the next line
    cc = cell(1,ndims(total)); [cc{:}] = ind2sub(size(C),indmax); subs = [cc{:}]
    

    Thanks to Eitan T for the suggestion to use comma-separated lists for a generalized ind2sub.

    Finally, you should test the result with isequal because this is not a normalized cross correlation, meaning that larger numbers in a local subregion will inflate the correlation value potentially giving false positives. If your total matrix is very inhomogeneous with regions of large values, you might need to search other maxima in C.

    0 讨论(0)
提交回复
热议问题