I would like to plot each column of a dataframe to a separate layer in ggplot2. Building the plot layer by layer works well:
df<-data.frame(x1=c(1:5),y1=c
One approach would be to reshape your data frame from wide format to long format using function melt()
from library reshape2
. In new data frame you will have x1
values, variable
that determine from which column data came, and value
that contains all original y values.
Now you can plot all data with one ggplot()
and geom_line()
call and use variable
to have for example separate color for each line.
library(reshape2)
df.long<-melt(df,id.vars="x1")
head(df.long)
x1 variable value
1 1 y1 2.0
2 2 y1 5.4
3 3 y1 7.1
4 4 y1 4.6
5 5 y1 5.0
6 1 y2 0.4
ggplot(df.long,aes(x1,value,color=variable))+geom_line()
If you really want to use for() loop (not the best way) then you should use names(df)[-1]
instead of seq()
. This will make vector of column names (except first column). Then inside geom_line()
use aes_string(y=i)
to select column by their name.
plotAllLayers<-function(df){
p<-ggplot(data=df,aes(df[,1]))
for(i in names(df)[-1]){
p<-p+geom_line(aes_string(y=i))
}
return(p)
}
plotAllLayers(df)
I tried the melt method on a large messy dataset and wished for a faster, cleaner method. This for loop uses eval() to build the desired plot.
fields <- names(df_normal) # index, var1, var2, var3, ...
p <- ggplot( aes(x=index), data = df_normal)
for (i in 2:length(fields)) {
loop_input = paste("geom_smooth(aes(y=",fields[i],",color='",fields[i],"'))", sep="")
p <- p + eval(parse(text=loop_input))
}
p <- p + guides( color = guide_legend(title = "",) )
p
This ran a lot faster then a large melted dataset when I tested.
I also tried the for loop with aes_string(y=fields[i], color=fields[i]) method, but couldn't get the colors to be differentiated.
For the OP's situation, I think pivot_longer
is best. But today I had a situation that did not seem amenable to pivoting, so I used the following code to create layers programmatically. I did not need to use eval()
.
data_tibble <- tibble(my_var = c(650, 1040, 1060, 1150, 1180, 1220, 1280, 1430, 1440, 1440, 1470, 1470, 1480, 1490, 1520, 1550, 1560, 1560, 1600, 1600, 1610, 1630, 1660, 1740, 1780, 1800, 1810, 1820, 1830, 1870, 1910, 1910, 1930, 1940, 1940, 1940, 1980, 1990, 2000, 2060, 2080, 2080, 2090, 2100, 2120, 2140, 2160, 2240, 2260, 2320, 2430, 2440, 2540, 2550, 2560, 2570, 2610, 2660, 2680, 2700, 2700, 2720, 2730, 2790, 2820, 2880, 2910, 2970, 2970, 3030, 3050, 3060, 3080, 3120, 3160, 3200, 3280, 3290, 3310, 3320, 3340, 3350, 3400, 3430, 3540, 3550, 3580, 3580, 3620, 3640, 3650, 3710, 3820, 3820, 3870, 3980, 4060, 4070, 4160, 4170, 4170, 4220, 4300, 4320, 4350, 4390, 4430, 4450, 4500, 4650, 4650, 5080, 5160, 5160, 5460, 5490, 5670, 5680, 5760, 5960, 5980, 6060, 6120, 6190, 6480, 6760, 7750, 8390, 9560))
# This is a normal histogram
plot <- data_tibble %>%
ggplot() +
geom_histogram(aes(x=my_var, y = ..density..))
# We prepare layers to add
stat_layers <- tibble(distribution = c("lognormal", "gamma", "normal"),
fun = c(dlnorm, dgamma, dnorm),
colour = c("red", "green", "yellow")) %>%
mutate(args = map(distribution, MASS::fitdistr, x=data_tibble$my_var)) %>%
mutate(args = map(args, ~as.list(.$estimate))) %>%
select(-distribution) %>%
pmap(stat_function)
# Final Plot
plot + stat_list
The idea is that you organize a tibble with the arguments that you want to plug into a geom/stat function. Each row should correspond to a +
layer that you want to add to the ggplot. Then use pmap
. This creates a list of layers that you can simply add to your plot.