how to add layers in ggplot using a for-loop

后端 未结 3 1402
我在风中等你
我在风中等你 2020-11-29 08:20

I would like to plot each column of a dataframe to a separate layer in ggplot2. Building the plot layer by layer works well:

df<-data.frame(x1=c(1:5),y1=c         


        
相关标签:
3条回答
  • 2020-11-29 09:12

    One approach would be to reshape your data frame from wide format to long format using function melt() from library reshape2. In new data frame you will have x1 values, variable that determine from which column data came, and value that contains all original y values.

    Now you can plot all data with one ggplot() and geom_line() call and use variable to have for example separate color for each line.

     library(reshape2)
     df.long<-melt(df,id.vars="x1")
     head(df.long)
      x1 variable value
    1  1       y1   2.0
    2  2       y1   5.4
    3  3       y1   7.1
    4  4       y1   4.6
    5  5       y1   5.0
    6  1       y2   0.4
     ggplot(df.long,aes(x1,value,color=variable))+geom_line()
    

    enter image description here

    If you really want to use for() loop (not the best way) then you should use names(df)[-1] instead of seq(). This will make vector of column names (except first column). Then inside geom_line() use aes_string(y=i) to select column by their name.

    plotAllLayers<-function(df){
      p<-ggplot(data=df,aes(df[,1]))
      for(i in names(df)[-1]){ 
        p<-p+geom_line(aes_string(y=i))
      }
      return(p)
    }
    
    plotAllLayers(df)
    

    enter image description here

    0 讨论(0)
  • 2020-11-29 09:12

    I tried the melt method on a large messy dataset and wished for a faster, cleaner method. This for loop uses eval() to build the desired plot.

    fields <- names(df_normal) # index, var1, var2, var3, ...
    
    p <- ggplot( aes(x=index), data = df_normal)
    for (i in 2:length(fields)) { 
      loop_input = paste("geom_smooth(aes(y=",fields[i],",color='",fields[i],"'))", sep="")
      p <- p + eval(parse(text=loop_input))  
    }
    p <- p + guides( color = guide_legend(title = "",) )
    p
    

    This ran a lot faster then a large melted dataset when I tested.

    I also tried the for loop with aes_string(y=fields[i], color=fields[i]) method, but couldn't get the colors to be differentiated.

    0 讨论(0)
  • 2020-11-29 09:15

    For the OP's situation, I think pivot_longer is best. But today I had a situation that did not seem amenable to pivoting, so I used the following code to create layers programmatically. I did not need to use eval().

    data_tibble <- tibble(my_var = c(650, 1040, 1060, 1150, 1180, 1220, 1280, 1430, 1440, 1440, 1470, 1470, 1480, 1490, 1520, 1550, 1560, 1560, 1600, 1600, 1610, 1630, 1660, 1740, 1780, 1800, 1810, 1820, 1830, 1870, 1910, 1910, 1930, 1940, 1940, 1940, 1980, 1990, 2000, 2060, 2080, 2080, 2090, 2100, 2120, 2140, 2160, 2240, 2260, 2320, 2430, 2440, 2540, 2550, 2560, 2570, 2610, 2660, 2680, 2700, 2700, 2720, 2730, 2790, 2820, 2880, 2910, 2970, 2970, 3030, 3050, 3060, 3080, 3120, 3160, 3200, 3280, 3290, 3310, 3320, 3340, 3350, 3400, 3430, 3540, 3550, 3580, 3580, 3620, 3640, 3650, 3710, 3820, 3820, 3870, 3980, 4060, 4070, 4160, 4170, 4170, 4220, 4300, 4320, 4350, 4390, 4430, 4450, 4500, 4650, 4650, 5080, 5160, 5160, 5460, 5490, 5670, 5680, 5760, 5960, 5980, 6060, 6120, 6190, 6480, 6760, 7750, 8390, 9560))
    
    # This is a normal histogram
    plot <- data_tibble %>%
      ggplot() +
      geom_histogram(aes(x=my_var, y = ..density..))
    
    # We prepare layers to add
    stat_layers <- tibble(distribution = c("lognormal", "gamma", "normal"),
                         fun = c(dlnorm, dgamma, dnorm),
                         colour = c("red", "green", "yellow")) %>% 
      mutate(args = map(distribution, MASS::fitdistr, x=data_tibble$my_var)) %>% 
      mutate(args = map(args, ~as.list(.$estimate))) %>% 
      select(-distribution) %>% 
      pmap(stat_function)
    
    # Final Plot
    plot + stat_list
    

    The idea is that you organize a tibble with the arguments that you want to plug into a geom/stat function. Each row should correspond to a + layer that you want to add to the ggplot. Then use pmap. This creates a list of layers that you can simply add to your plot.

    0 讨论(0)
提交回复
热议问题