Given a the following table:
Index | Element
---------------
1 | A
2 | B
3 | C
4 | D
We want to generate all th
After making some perhaps snarky comments, this problem stuck in my brain all evening, and I eventually came up with the following set-based approach. I believe it definitely qualifies as "elegant", but then I also think it qualifies as "kinda dumb". You make the call.
First, set up some tables:
-- For testing purposes
DROP TABLE Source
DROP TABLE Numbers
DROP TABLE Results
-- Add as many rows as need be processed--though note that you get N! (number of rows, factorial) results,
-- and that gets big fast. The Identity column must start at 1, or the algorithm will have to be adjusted.
-- Element could be more than char(1), though the algorithm would have to be adjusted again, and each element
-- must be the same length.
CREATE TABLE Source
(
SourceId int not null identity(1,1)
,Element char(1) not null
)
INSERT Source (Element) values ('A')
INSERT Source (Element) values ('B')
INSERT Source (Element) values ('C')
INSERT Source (Element) values ('D')
--INSERT Source (Element) values ('E')
--INSERT Source (Element) values ('F')
-- This is a standard Tally table (or "table of numbers")
-- It only needs to be as long as there are elements in table Source
CREATE TABLE Numbers (Number int not null)
INSERT Numbers (Number) values (1)
INSERT Numbers (Number) values (2)
INSERT Numbers (Number) values (3)
INSERT Numbers (Number) values (4)
INSERT Numbers (Number) values (5)
INSERT Numbers (Number) values (6)
INSERT Numbers (Number) values (7)
INSERT Numbers (Number) values (8)
INSERT Numbers (Number) values (9)
INSERT Numbers (Number) values (10)
-- Results are iteratively built here. This could be a temp table. An index on "Length" might make runs
-- faster for large sets. Combo must be at least as long as there are characters to be permuted.
CREATE TABLE Results
(
Combo varchar(10) not null
,Length int not null
)
Here's the routine:
SET NOCOUNT on
DECLARE
@Loop int
,@MaxLoop int
-- How many elements there are to process
SELECT @MaxLoop = max(SourceId)
from Source
-- Initialize first value
TRUNCATE TABLE Results
INSERT Results (Combo, Length)
select Element, 1
from Source
where SourceId = 1
SET @Loop = 2
-- Iterate to add each element after the first
WHILE @Loop <= @MaxLoop
BEGIN
-- See comments below. Note that the "distinct" remove duplicates, if a given value
-- is to be included more than once
INSERT Results (Combo, Length)
select distinct
left(re.Combo, @Loop - nm.Number)
+ so.Element
+ right(re.Combo, nm.Number - 1)
,@Loop
from Results re
inner join Numbers nm
on nm.Number <= @Loop
inner join Source so
on so.SourceId = @Loop
where re.Length = @Loop - 1
-- For performance, add this in if sets will be large
--DELETE Results
-- where Length <> @Loop
SET @Loop = @Loop + 1
END
-- Show results
SELECT *
from Results
where Length = @MaxLoop
order by Combo
The general idea is: when adding a new element (say "B") to any string (say, "A"), to catch all permutations you would add B to all possible positions (Ba, aB), resulting in a new set of strings. Then iterate: Add a new element (C) to each position in a string (AB becomes Cab, aCb, abC), for all strings (Cba, bCa, baC), and you have the set of permutations. Iterate over each result set with the next character until you run out of characters... or resources. 10 elements is 3.6 million permutations, roughly 48MB with the above algorithm, and 14 (unique) elements would hit 87 billion permutations and 1.163 terabytes.
I'm sure it could eventually be wedged into a CTE, but in the end all that would be is a glorified loop. The logic is clearer this way, and I can't help but think the CTE execution plan would be a nightmare.
Current solution using a recursive CTE.
-- The base elements
Declare @Number Table( Element varchar(MAX), Id varchar(MAX) )
Insert Into @Number Values ( 'A', '01')
Insert Into @Number Values ( 'B', '02')
Insert Into @Number Values ( 'C', '03')
Insert Into @Number Values ( 'D', '04')
-- Number of elements
Declare @ElementsNumber int
Select @ElementsNumber = COUNT(*)
From @Number;
-- Permute!
With Permutations( Permutation, -- The permutation generated
Ids, -- Which elements where used in the permutation
Depth ) -- The permutation length
As
(
Select Element,
Id + ';',
Depth = 1
From @Number
Union All
Select Permutation + ' ' + Element,
Ids + Id + ';',
Depth = Depth + 1
From Permutations,
@Number
Where Depth < @ElementsNumber And -- Generate only the required permutation number
Ids Not like '%' + Id + ';%' -- Do not repeat elements in the permutation (this is the reason why we need the 'Ids' column)
)
Select Permutation
From Permutations
Where Depth = @ElementsNumber
Way too much rust on my SQL skills, but i took a different tack for a similar problem and thought it worth sharing.
Table1 - X strings in a single field Uno
Table2 - Y strings in a single field Dos
(SELECT Uno, Dos
FROM Table1
CROSS JOIN Table2 ON 1=1)
UNION
(SELECT Dos, Uno
FROM Table1
CROSS JOIN Table2 ON 1=1)
Same principle for 3 tables with an added CROSS JOIN
(SELECT Tres, Uno, Dos
FROM Table1
CROSS JOIN Table2 ON 1=1
CROSS JOIN Table3 ON 1=1)
although it takes 6 cross-join sets in the union.
This method uses a binary mask to select the correct rows:
;with src(t,n,p) as (
select element, index, power(2,index-1)
from table
)
select s1.t+s2.t+s3.t+s4.t
from src s1, src s2, src s3, src s4
where s1.p+s2.p+s3.p+s4.p=power(2,4)-1
My original post:
declare @t varchar(4) = 'ABCD'
;with src(t,n,p) as (
select substring(@t,1,1),1,power(2,0)
union all
select substring(@t,n+1,1),n+1,power(2,n)
from src
where n < len(@t)
)
select s1.t+s2.t+s3.t+s4.t
from src s1, src s2, src s3, src s4
where s1.p+s2.p+s3.p+s4.p=power(2,len(@t))-1
This is one of those problems that haunts you. I liked the simplicity of my original answer but there was this issue where I was still building all the possible solutions and then selecting the correct ones. One more try to make this process more efficient by only building the solutions that were correct yielded this answer. Add a character to the string only if that character didn't exist in the string. Patindex seemed like the perfect companion for a CTE solution. Here it is.
declare @t varchar(10) = 'ABCDEFGHIJ'
;with s(t,n) as (
select substring(@t,1,1),1
union all
select substring(@t,n+1,1),n+1
from s where n<len(@t)
)
,j(t) as (
select cast(t as varchar(10)) from s
union all
select cast(j.t+s.t as varchar(10))
from j,s where patindex('%'+s.t+'%',j.t)=0
)
select t from j where len(t)=len(@t)
I was able to build all 3.6 million solutions in 3 minutes and 2 seconds. Hopefully this solution will not get missed just because it's not the first.
--Hopefully this is a quick solution, just change the values going into #X
IF OBJECT_ID('tempdb.dbo.#X', 'U') IS NOT NULL DROP TABLE #X; CREATE table #X([Opt] [nvarchar](10) NOT NULL)
Insert into #X values('a'),('b'),('c'),('d')
declare @pSQL NVarChar(max)='select * from #X X1 ', @pN int =(select count(*) from #X), @pC int = 0;
while @pC<@pN begin
if @pC>0 set @pSQL = concat(@pSQL,' cross join #X X', @pC+1);
set @pC = @pC +1;
end
execute(@pSQL)
--or as single column result
IF OBJECT_ID('tempdb.dbo.#X', 'U') IS NOT NULL DROP TABLE #X; CREATE table #X([Opt] [nvarchar](10) NOT NULL)
Insert into #X values('a'),('b'),('c'),('d')
declare @pSQL NVarChar(max)=' as R from #X X1 ',@pSelect NVarChar(Max)=' ',@pJoin NVarChar(Max)='', @pN int =(select count(*) from #X), @pC int = 0;
while @pC<@pN begin
if @pC>0 set @pJoin = concat(@pJoin ,' cross join #X X', @pC+1) set @pSelect = concat(@pSelect ,'+ X', @pC+1,'.Opt ')
set @pC = @pC +1;
end
set @pSQL = concat ('select X1.Opt', @pSelect,@pSQL ,@pJoin)
exec(@pSQL)
DECLARE @s VARCHAR(5);
SET @s = 'ABCDE';
WITH Subsets AS (
SELECT CAST(SUBSTRING(@s, Number, 1) AS VARCHAR(5)) AS Token,
CAST('.'+CAST(Number AS CHAR(1))+'.' AS VARCHAR(11)) AS Permutation,
CAST(1 AS INT) AS Iteration
FROM dbo.Numbers WHERE Number BETWEEN 1 AND 5
UNION ALL
SELECT CAST(Token+SUBSTRING(@s, Number, 1) AS VARCHAR(5)) AS Token,
CAST(Permutation+CAST(Number AS CHAR(1))+'.' AS VARCHAR(11)) AS
Permutation,
s.Iteration + 1 AS Iteration
FROM Subsets s JOIN dbo.Numbers n ON s.Permutation NOT LIKE
'%.'+CAST(Number AS CHAR(1))+'.%' AND s.Iteration < 5 AND Number
BETWEEN 1 AND 5
--AND s.Iteration = (SELECT MAX(Iteration) FROM Subsets)
)
SELECT * FROM Subsets
WHERE Iteration = 5
ORDER BY Permutation
Token Permutation Iteration
----- ----------- -----------
ABCDE .1.2.3.4.5. 5
ABCED .1.2.3.5.4. 5
ABDCE .1.2.4.3.5. 5
(snip)
EDBCA .5.4.2.3.1. 5
EDCAB .5.4.3.1.2. 5
EDCBA .5.4.3.2.1. 5
first posted a while ago here
However, it would be better to do it in a better language such as C# or C++.