I\'m trying to find a function that will permute all the unique permutations of a vector, while not counting juxtapositions within subsets of the same element type.
As this question is old and continues to attract many views, this post is solely meant to inform R
users of the current state of the language with regards to performing the popular task outlined by the OP. As @RandyLai alludes to, there are packages developed with this task in mind. They are: arrangements and RcppAlgos*.
They are very efficient and quite easy to use for generating permutations of a multiset.
dat <- c(1, 0, 3, 4, 1, 0, 0, 3, 0, 4)
dim(RcppAlgos::permuteGeneral(sort(unique(dat)), freqs = table(dat)))
[1] 18900 10
microbenchmark(algos = RcppAlgos::permuteGeneral(sort(unique(dat)), freqs = table(dat)),
arngmnt = arrangements::permutations(sort(unique(dat)), freq = table(dat)),
curaccptd = uniqueperm2(dat), unit = "relative")
Unit: relative
expr min lq mean median uq max neval
algos 1.000000 1.000000 1.0000000 1.000000 1.000000 1.0000000 100
arngmnt 1.501262 1.093072 0.8783185 1.089927 1.133112 0.3238829 100
curaccptd 19.847457 12.573657 10.2272080 11.705090 11.872955 3.9007364 100
With RcppAlgos
we can utilize parallel processing for even better efficiency on larger examples.
hugeDat <- rep(dat, 2)[-(1:5)]
RcppAlgos::permuteCount(sort(unique(hugeDat)), freqs = table(hugeDat))
[1] 3603600
microbenchmark(algospar = RcppAlgos::permuteGeneral(sort(unique(hugeDat)),
freqs = table(hugeDat), nThreads = 4),
arngmnt = arrangements::permutations(sort(unique(hugeDat)), freq = table(hugeDat)),
curaccptd = uniqueperm2(hugeDat), unit = "relative", times = 10)
Unit: relative
expr min lq mean median uq max neval
algospar 1.00000 1.000000 1.000000 1.000000 1.00000 1.00000 10
arngmnt 3.23193 3.109092 2.427836 2.598058 2.15965 1.79889 10
curaccptd 49.46989 45.910901 34.533521 39.399481 28.87192 22.95247 10
A nice benefit of these packages is that the output is in lexicographical order:
head(RcppAlgos::permuteGeneral(sort(unique(dat)), freqs = table(dat)))
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,] 0 0 0 0 1 1 3 3 4 4
[2,] 0 0 0 0 1 1 3 4 3 4
[3,] 0 0 0 0 1 1 3 4 4 3
[4,] 0 0 0 0 1 1 4 3 3 4
[5,] 0 0 0 0 1 1 4 3 4 3
[6,] 0 0 0 0 1 1 4 4 3 3
tail(RcppAlgos::permuteGeneral(sort(unique(dat)), freqs = table(dat)))
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[18895,] 4 4 3 3 0 1 1 0 0 0
[18896,] 4 4 3 3 1 0 0 0 0 1
[18897,] 4 4 3 3 1 0 0 0 1 0
[18898,] 4 4 3 3 1 0 0 1 0 0
[18899,] 4 4 3 3 1 0 1 0 0 0
[18900,] 4 4 3 3 1 1 0 0 0 0
identical(RcppAlgos::permuteGeneral(sort(unique(dat)), freqs = table(dat)),
arrangements::permutations(sort(unique(dat)), freq = table(dat)))
[1] TRUE
Additionally, both packages offer iterators that allow for memory efficient generation of permutation, one by one:
algosIter <- RcppAlgos::permuteIter(sort(unique(dat)), freqs = table(dat))
algosIter$nextIter()
[1] 0 0 0 0 1 1 3 3 4 4
algosIter$nextNIter(5)
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,] 0 0 0 0 1 1 3 4 3 4
[2,] 0 0 0 0 1 1 3 4 4 3
[3,] 0 0 0 0 1 1 4 3 3 4
[4,] 0 0 0 0 1 1 4 3 4 3
[5,] 0 0 0 0 1 1 4 4 3 3
## last permutation
algosIter$back()
[1] 4 4 3 3 1 1 0 0 0 0
## use reverse iterator methods
algosIter$prevNIter(5)
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,] 4 4 3 3 1 0 1 0 0 0
[2,] 4 4 3 3 1 0 0 1 0 0
[3,] 4 4 3 3 1 0 0 0 1 0
[4,] 4 4 3 3 1 0 0 0 0 1
[5,] 4 4 3 3 0 1 1 0 0 0
* I am the author of RcppAlgos