How would one create an iterative function (or iterator object) in python?
Include the following code in your class code.
def __iter__(self):
for x in self.iterable:
yield x
Make sure that you replace self.iterable
with the iterable which you iterate through.
Here's an example code
class someClass:
def __init__(self,list):
self.list = list
def __iter__(self):
for x in self.list:
yield x
var = someClass([1,2,3,4,5])
for num in var:
print(num)
Output
1
2
3
4
5
Note: Since strings are also iterable, they can also be used as an argument for the class
foo = someClass("Python")
for x in foo:
print(x)
Output
P
y
t
h
o
n
There are four ways to build an iterative function:
next
in Python 2.x))Examples:
# generator
def uc_gen(text):
for char in text.upper():
yield char
# generator expression
def uc_genexp(text):
return (char for char in text.upper())
# iterator protocol
class uc_iter():
def __init__(self, text):
self.text = text.upper()
self.index = 0
def __iter__(self):
return self
def __next__(self):
try:
result = self.text[self.index]
except IndexError:
raise StopIteration
self.index += 1
return result
# getitem method
class uc_getitem():
def __init__(self, text):
self.text = text.upper()
def __getitem__(self, index):
return self.text[index]
To see all four methods in action:
for iterator in uc_gen, uc_genexp, uc_iter, uc_getitem:
for ch in iterator('abcde'):
print(ch, end=' ')
print()
Which results in:
A B C D E
A B C D E
A B C D E
A B C D E
Note:
The two generator types (uc_gen
and uc_genexp
) cannot be reversed()
; the plain iterator (uc_iter
) would need the __reversed__
magic method (which, according to the docs, must return a new iterator, but returning self
works (at least in CPython)); and the getitem iteratable (uc_getitem
) must have the __len__
magic method:
# for uc_iter we add __reversed__ and update __next__
def __reversed__(self):
self.index = -1
return self
def __next__(self):
try:
result = self.text[self.index]
except IndexError:
raise StopIteration
self.index += -1 if self.index < 0 else +1
return result
# for uc_getitem
def __len__(self)
return len(self.text)
To answer Colonel Panic's secondary question about an infinite lazily evaluated iterator, here are those examples, using each of the four methods above:
# generator
def even_gen():
result = 0
while True:
yield result
result += 2
# generator expression
def even_genexp():
return (num for num in even_gen()) # or even_iter or even_getitem
# not much value under these circumstances
# iterator protocol
class even_iter():
def __init__(self):
self.value = 0
def __iter__(self):
return self
def __next__(self):
next_value = self.value
self.value += 2
return next_value
# getitem method
class even_getitem():
def __getitem__(self, index):
return index * 2
import random
for iterator in even_gen, even_genexp, even_iter, even_getitem:
limit = random.randint(15, 30)
count = 0
for even in iterator():
print even,
count += 1
if count >= limit:
break
print
Which results in (at least for my sample run):
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
How to choose which one to use? This is mostly a matter of taste. The two methods I see most often are generators and the iterator protocol, as well as a hybrid (__iter__
returning a generator).
Generator expressions are useful for replacing list comprehensions (they are lazy and so can save on resources).
If one needs compatibility with earlier Python 2.x versions use __getitem__
.
This is an iterable function without yield
. It make use of the iter
function and a closure which keeps it's state in a mutable (list
) in the enclosing scope for python 2.
def count(low, high):
counter = [0]
def tmp():
val = low + counter[0]
if val < high:
counter[0] += 1
return val
return None
return iter(tmp, None)
For Python 3, closure state is kept in an immutable in the enclosing scope and nonlocal
is used in local scope to update the state variable.
def count(low, high):
counter = 0
def tmp():
nonlocal counter
val = low + counter
if val < high:
counter += 1
return val
return None
return iter(tmp, None)
Test;
for i in count(1,10):
print(i)
1
2
3
4
5
6
7
8
9
If you looking for something short and simple, maybe it will be enough for you:
class A(object):
def __init__(self, l):
self.data = l
def __iter__(self):
return iter(self.data)
example of usage:
In [3]: a = A([2,3,4])
In [4]: [i for i in a]
Out[4]: [2, 3, 4]