How to create a custom Estimator in PySpark

前端 未结 1 1679
挽巷
挽巷 2020-11-29 05:47

I am trying to build a simple custom Estimator in PySpark MLlib. I have here that it is possible to write a custom Transformer but I am not sure how to do it on

相关标签:
1条回答
  • 2020-11-29 06:15

    Generally speaking there is no documentation because as for Spark 1.6 / 2.0 most of the related API is not intended to be public. It should change in Spark 2.1.0 (see SPARK-7146).

    API is relatively complex because it has to follow specific conventions in order to make given Transformer or Estimator compatible with Pipeline API. Some of these methods may be required for features like reading and writing or grid search. Other, like keyword_only are just a simple helpers and not strictly required.

    Assuming you have defined following mix-ins for mean parameter:

    from pyspark.ml.pipeline import Estimator, Model, Pipeline
    from pyspark.ml.param.shared import *
    from pyspark.sql.functions import avg, stddev_samp
    
    
    class HasMean(Params):
    
        mean = Param(Params._dummy(), "mean", "mean", 
            typeConverter=TypeConverters.toFloat)
    
        def __init__(self):
            super(HasMean, self).__init__()
    
        def setMean(self, value):
            return self._set(mean=value)
    
        def getMean(self):
            return self.getOrDefault(self.mean)
    

    standard deviation parameter:

    class HasStandardDeviation(Params):
    
        standardDeviation = Param(Params._dummy(),
            "standardDeviation", "standardDeviation", 
            typeConverter=TypeConverters.toFloat)
    
        def __init__(self):
            super(HasStandardDeviation, self).__init__()
    
        def setStddev(self, value):
            return self._set(standardDeviation=value)
    
        def getStddev(self):
            return self.getOrDefault(self.standardDeviation)
    

    and threshold:

    class HasCenteredThreshold(Params):
    
        centeredThreshold = Param(Params._dummy(),
                "centeredThreshold", "centeredThreshold",
                typeConverter=TypeConverters.toFloat)
    
        def __init__(self):
            super(HasCenteredThreshold, self).__init__()
    
        def setCenteredThreshold(self, value):
            return self._set(centeredThreshold=value)
    
        def getCenteredThreshold(self):
            return self.getOrDefault(self.centeredThreshold)
    

    you could create basic Estimator as follows:

    from pyspark.ml.util import DefaultParamsReadable, DefaultParamsWritable 
    from pyspark import keyword_only  
    
    class NormalDeviation(Estimator, HasInputCol, 
            HasPredictionCol, HasCenteredThreshold,
            # Available in PySpark >= 2.3.0 
            # Credits https://stackoverflow.com/a/52467470
            # by https://stackoverflow.com/users/234944/benjamin-manns
            DefaultParamsReadable, DefaultParamsWritable):
    
        @keyword_only
        def __init__(self, inputCol=None, predictionCol=None, centeredThreshold=1.0):
            super(NormalDeviation, self).__init__()
            kwargs = self._input_kwargs
            self.setParams(**kwargs)
    
        # Required in Spark >= 3.0
        def setInputCol(self, value):
            """
            Sets the value of :py:attr:`inputCol`.
            """
            return self._set(inputCol=value)
    
        # Required in Spark >= 3.0
        def setPredictionCol(self, value):
            """
            Sets the value of :py:attr:`predictionCol`.
            """
            return self._set(predictionCol=value)
    
        @keyword_only
        def setParams(self, inputCol=None, predictionCol=None, centeredThreshold=1.0):
            kwargs = self._input_kwargs
            return self._set(**kwargs)        
    
        def _fit(self, dataset):
            c = self.getInputCol()
            mu, sigma = dataset.agg(avg(c), stddev_samp(c)).first()
            return NormalDeviationModel(
                inputCol=c, mean=mu, standardDeviation=sigma, 
                centeredThreshold=self.getCenteredThreshold(),
                predictionCol=self.getPredictionCol())
    
    
    class NormalDeviationModel(Model, HasInputCol, HasPredictionCol,
            HasMean, HasStandardDeviation, HasCenteredThreshold,
            DefaultParamsReadable, DefaultParamsWritable):
    
        @keyword_only
        def __init__(self, inputCol=None, predictionCol=None,
                    mean=None, standardDeviation=None,
                    centeredThreshold=None):
            super(NormalDeviationModel, self).__init__()
            kwargs = self._input_kwargs
            self.setParams(**kwargs)  
    
        @keyword_only
        def setParams(self, inputCol=None, predictionCol=None,
                    mean=None, standardDeviation=None,
                    centeredThreshold=None):
            kwargs = self._input_kwargs
            return self._set(**kwargs)           
    
        def _transform(self, dataset):
            x = self.getInputCol()
            y = self.getPredictionCol()
            threshold = self.getCenteredThreshold()
            mu = self.getMean()
            sigma = self.getStddev()
    
            return dataset.withColumn(y, (dataset[x] - mu) > threshold * sigma)     
    

    Finally it could be used as follows:

    df = sc.parallelize([(1, 2.0), (2, 3.0), (3, 0.0), (4, 99.0)]).toDF(["id", "x"])
    
    normal_deviation = NormalDeviation().setInputCol("x").setCenteredThreshold(1.0)
    model  = Pipeline(stages=[normal_deviation]).fit(df)
    
    model.transform(df).show()
    ## +---+----+----------+
    ## | id|   x|prediction|
    ## +---+----+----------+
    ## |  1| 2.0|     false|
    ## |  2| 3.0|     false|
    ## |  3| 0.0|     false|
    ## |  4|99.0|      true|
    ## +---+----+----------+
    
    0 讨论(0)
提交回复
热议问题