I have a pandas dataframe:
import pandas as pnd
d = pnd.Timestamp(\'2013-01-01 16:00\')
dates = pnd.bdate_range(start=d, end = d+pnd.DateOffset(days=10), nor
Get dataframe integer index given a date key:
>>> import pandas as pd
>>> df = pd.DataFrame(
index=pd.date_range(pd.datetime(2008,1,1), pd.datetime(2008,1,5)),
columns=("foo", "bar"))
>>> df["foo"] = [10,20,40,15,10]
>>> df["bar"] = [100,200,40,-50,-38]
>>> df
foo bar
2008-01-01 10 100
2008-01-02 20 200
2008-01-03 40 40
2008-01-04 15 -50
2008-01-05 10 -38
>>> df.index.get_loc(df["bar"].argmax())
1
>>> df.index.get_loc(df["foo"].argmax())
2
In column bar, the index of the maximum value is 1
In column foo, the index of the maximum value is 2
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Index.get_loc.html
You're looking for the index method get_loc
:
In [11]: df.index.get_loc(ds)
Out[11]: 1
get_loc can be used for rows and columns according to:
import pandas as pnd
d = pnd.Timestamp('2013-01-01 16:00')
dates = pnd.bdate_range(start=d, end = d+pnd.DateOffset(days=10), normalize = False)
df = pnd.DataFrame(index=dates)
df['a'] = 5
df['b'] = 6
print(df.head())
a b
2013-01-01 16:00:00 5 6
2013-01-02 16:00:00 5 6
2013-01-03 16:00:00 5 6
2013-01-04 16:00:00 5 6
2013-01-07 16:00:00 5 6
#for rows
print(df.index.get_loc('2013-01-01 16:00:00'))
0
#for columns
print(df.columns.get_loc('b'))
1