I\'d like to count frequencies of all words in a text file.
>>> countInFile(\'test.txt\')
should return {\'aaa\':1, \'bbb\':
The most succinct approach is to use the tools Python gives you.
from future_builtins import map # Only on Python 2
from collections import Counter
from itertools import chain
def countInFile(filename):
with open(filename) as f:
return Counter(chain.from_iterable(map(str.split, f)))
That's it. map(str.split, f)
is making a generator that returns list
s of words from each line. Wrapping in chain.from_iterable
converts that to a single generator that produces a word at a time. Counter
takes an input iterable and counts all unique values in it. At the end, you return
a dict
-like object (a Counter
) that stores all unique words and their counts, and during creation, you only store a line of data at a time and the total counts, not the whole file at once.
In theory, on Python 2.7 and 3.1, you might do slightly better looping over the chained results yourself and using a dict
or collections.defaultdict(int)
to count (because Counter
is implemented in Python, which can make it slower in some cases), but letting Counter
do the work is simpler and more self-documenting (I mean, the whole goal is counting, so use a Counter
). Beyond that, on CPython (the reference interpreter) 3.2 and higher Counter
has a C level accelerator for counting iterable inputs that will run faster than anything you could write in pure Python.
Update: You seem to want punctuation stripped and case-insensitivity, so here's a variant of my earlier code that does that:
from string import punctuation
def countInFile(filename):
with open(filename) as f:
linewords = (line.translate(None, punctuation).lower().split() for line in f)
return Counter(chain.from_iterable(linewords))
Your code runs much more slowly because it's creating and destroying many small Counter
and set
objects, rather than .update
-ing a single Counter
once per line (which, while slightly slower than what I gave in the updated code block, would be at least algorithmically similar in scaling factor).
Combining every ones else's views and some of my own :) Here is what I have for you
from collections import Counter
from nltk.tokenize import RegexpTokenizer
from nltk.corpus import stopwords
text='''Note that if you use RegexpTokenizer option, you lose
natural language features special to word_tokenize
like splitting apart contractions. You can naively
split on the regex \w+ without any need for the NLTK.
'''
# tokenize
raw = ' '.join(word_tokenize(text.lower()))
tokenizer = RegexpTokenizer(r'[A-Za-z]{2,}')
words = tokenizer.tokenize(raw)
# remove stopwords
stop_words = set(stopwords.words('english'))
words = [word for word in words if word not in stop_words]
# count word frequency, sort and return just 20
counter = Counter()
counter.update(words)
most_common = counter.most_common(20)
most_common
(All ones)
[('note', 1), ('use', 1), ('regexptokenizer', 1), ('option', 1), ('lose', 1), ('natural', 1), ('language', 1), ('features', 1), ('special', 1), ('word', 1), ('tokenize', 1), ('like', 1), ('splitting', 1), ('apart', 1), ('contractions', 1), ('naively', 1), ('split', 1), ('regex', 1), ('without', 1), ('need', 1)]
One can do better than this in terms of efficiency but if you are not worried about it too much, this code is the best.
Skip CountVectorizer and scikit-learn.
The file may be too large to load into memory but I doubt the python dictionary gets too large. The easiest option for you may be to split the large file into 10-20 smaller files and extend your code to loop over the smaller files.
Instead of decoding the whole bytes read from the url, I process the binary data. Because bytes.translate
expects its second argument to be a byte string, I utf-8 encode punctuation
. After removing punctuations, I utf-8 decode the byte string.
The function freq_dist
expects an iterable. That's why I've passed data.splitlines()
.
from urllib2 import urlopen
from collections import Counter
from string import punctuation
from time import time
import sys
from pprint import pprint
url = 'https://raw.githubusercontent.com/Simdiva/DSL-Task/master/data/DSLCC-v2.0/test/test.txt'
data = urlopen(url).read()
def freq_dist(data):
"""
:param data: file-like object opened in binary mode or
sequence of byte strings separated by '\n'
:type data: an iterable sequence
"""
#For readability
#return Counter(word for line in data
# for word in line.translate(
# None,bytes(punctuation.encode('utf-8'))).decode('utf-8').split())
punc = punctuation.encode('utf-8')
words = (word for line in data for word in line.translate(None, punc).decode('utf-8').split())
return Counter(words)
start = time()
word_dist = freq_dist(data.splitlines())
print('elapsed: {}'.format(time() - start))
pprint(word_dist.most_common(10))
Output;
elapsed: 0.806480884552
[(u'de', 11106),
(u'a', 6742),
(u'que', 5701),
(u'la', 4319),
(u'je', 4260),
(u'se', 3938),
(u'\u043d\u0430', 3929),
(u'na', 3623),
(u'da', 3534),
(u'i', 3487)]
It seems dict
is more efficient than Counter
object.
def freq_dist(data):
"""
:param data: A string with sentences separated by '\n'
:type data: str
"""
d = {}
punc = punctuation.encode('utf-8')
words = (word for line in data for word in line.translate(None, punc).decode('utf-8').split())
for word in words:
d[word] = d.get(word, 0) + 1
return d
start = time()
word_dist = freq_dist(data.splitlines())
print('elapsed: {}'.format(time() - start))
pprint(sorted(word_dist.items(), key=lambda x: (x[1], x[0]), reverse=True)[:10])
Output;
elapsed: 0.642680168152
[(u'de', 11106),
(u'a', 6742),
(u'que', 5701),
(u'la', 4319),
(u'je', 4260),
(u'se', 3938),
(u'\u043d\u0430', 3929),
(u'na', 3623),
(u'da', 3534),
(u'i', 3487)]
To be more memory efficient when opening huge file, you have to pass just the opened url. But the timing will include file download time too.
data = urlopen(url)
word_dist = freq_dist(data)
A memory efficient and accurate way is to make use of
scikit
(for ngram extraction)word_tokenize
numpy
matrix sum to collect the countscollections.Counter
for collecting the counts and vocabularyAn example:
import urllib.request
from collections import Counter
import numpy as np
from nltk import word_tokenize
from sklearn.feature_extraction.text import CountVectorizer
# Our sample textfile.
url = 'https://raw.githubusercontent.com/Simdiva/DSL-Task/master/data/DSLCC-v2.0/test/test.txt'
response = urllib.request.urlopen(url)
data = response.read().decode('utf8')
# Note that `ngram_range=(1, 1)` means we want to extract Unigrams, i.e. tokens.
ngram_vectorizer = CountVectorizer(analyzer='word', tokenizer=word_tokenize, ngram_range=(1, 1), min_df=1)
# X matrix where the row represents sentences and column is our one-hot vector for each token in our vocabulary
X = ngram_vectorizer.fit_transform(data.split('\n'))
# Vocabulary
vocab = list(ngram_vectorizer.get_feature_names())
# Column-wise sum of the X matrix.
# It's some crazy numpy syntax that looks horribly unpythonic
# For details, see http://stackoverflow.com/questions/3337301/numpy-matrix-to-array
# and http://stackoverflow.com/questions/13567345/how-to-calculate-the-sum-of-all-columns-of-a-2d-numpy-array-efficiently
counts = X.sum(axis=0).A1
freq_distribution = Counter(dict(zip(vocab, counts)))
print (freq_distribution.most_common(10))
[out]:
[(',', 32000),
('.', 17783),
('de', 11225),
('a', 7197),
('que', 5710),
('la', 4732),
('je', 4304),
('se', 4013),
('на', 3978),
('na', 3834)]
Essentially, you can also do this:
from collections import Counter
import numpy as np
from nltk import word_tokenize
from sklearn.feature_extraction.text import CountVectorizer
def freq_dist(data):
"""
:param data: A string with sentences separated by '\n'
:type data: str
"""
ngram_vectorizer = CountVectorizer(analyzer='word', tokenizer=word_tokenize, ngram_range=(1, 1), min_df=1)
X = ngram_vectorizer.fit_transform(data.split('\n'))
vocab = list(ngram_vectorizer.get_feature_names())
counts = X.sum(axis=0).A1
return Counter(dict(zip(vocab, counts)))
Let's timeit
:
import time
start = time.time()
word_distribution = freq_dist(data)
print (time.time() - start)
[out]:
5.257147789001465
Note that CountVectorizer can also take a file instead of a string and there's no need to read the whole file into memory. In code:
import io
from collections import Counter
import numpy as np
from sklearn.feature_extraction.text import CountVectorizer
infile = '/path/to/input.txt'
ngram_vectorizer = CountVectorizer(analyzer='word', ngram_range=(1, 1), min_df=1)
with io.open(infile, 'r', encoding='utf8') as fin:
X = ngram_vectorizer.fit_transform(fin)
vocab = ngram_vectorizer.get_feature_names()
counts = X.sum(axis=0).A1
freq_distribution = Counter(dict(zip(vocab, counts)))
print (freq_distribution.most_common(10))
This should suffice.
def countinfile(filename):
d = {}
with open(filename, "r") as fin:
for line in fin:
words = line.strip().split()
for word in words:
try:
d[word] += 1
except KeyError:
d[word] = 1
return d