I am learning backtracking and recursion and I am stuck at an algorithm for printing all the permutations of a string. I solved it using the bell algorithm for permutation b
I create more specific but not efficient Program for permutation for general string.
It's work nice way.
//ubuntu 13.10 and g++ compiler but it's works on any platform and OS
//All Permutation of general string.
#include<iostream>
#include<stdio.h>
#include<string>
#include<string.h>
using namespace std;
int len;
string str;
void permutation(int cnum)
{
int mid;
int flag=1;
int giga=0;
int dead=0;
int array[50];
for(int i=0;i<len-1;i++)
{
array[50]='\0';
dead=0;
for(int j=cnum;j<len+cnum;j++)
{
mid=j%len;
if(mid==cnum && flag==1)
{
cout<<str[mid];
array[dead]=mid;
dead++;
flag=0;
}
else
{
giga=(i+j)%len;
for(int k=0;k<dead;k++)
{
if((array[k]==giga) && flag==0)
{
giga=(giga+1)%len;
}
}
cout<<str[giga];
array[dead]=giga;
dead++;
}
}
cout<<endl;
flag=1;
}
}
int main()
{
cout<<"Enter the string :: ";
getline(cin,str);
len=str.length();
cout<<"String length = "<<len<<endl;
cout<<"Total permutation = "<<len*(len-1)<<endl;
for(int j=0;j<len;j++)
{
permutation(j);
}
return 0;
}
The code has 2 problems, both related to n
, the assumed length of the string. The code for (j = i; j <= n; j++) { swap((a+i), (a+j)); ...
swap in string's null character '\0'
and gives code truncated results. Check the original (i == n)
which should be (i == (n-1))
.
Backtracking is applied by calling swap()
twice effective undoing its original swap.
The order of complexity is the same for Bell Algorithm.
#include <stdio.h>
void swap(char *a, char *b) { char t = *a; *a = *b; *b = t; }
void permute(char *a, int i, int n) {
// If we are at the last letter, print it
if (i == (n-1)) printf("%s\n", a);
else {
// Show all the permutations with the first i-1 letters fixed and
// swapping the i'th letter for each of the remaining ones.
for (int j = i; j < n; j++) {
swap((a+i), (a+j));
permute(a, i+1, n);
swap((a+i), (a+j));
}
}
}
char s[100];
strcpy(s, "ABCD");
permute(s, 0, strlen(s));