Tensorflow: how to save/restore a model?

前端 未结 26 2543
迷失自我
迷失自我 2020-11-21 11:37

After you train a model in Tensorflow:

  1. How do you save the trained model?
  2. How do you later restore this saved model?
相关标签:
26条回答
  • 2020-11-21 12:23

    According to the new Tensorflow version, tf.train.Checkpoint is the preferable way of saving and restoring a model:

    Checkpoint.save and Checkpoint.restore write and read object-based checkpoints, in contrast to tf.train.Saver which writes and reads variable.name based checkpoints. Object-based checkpointing saves a graph of dependencies between Python objects (Layers, Optimizers, Variables, etc.) with named edges, and this graph is used to match variables when restoring a checkpoint. It can be more robust to changes in the Python program, and helps to support restore-on-create for variables when executing eagerly. Prefer tf.train.Checkpoint over tf.train.Saver for new code.

    Here is an example:

    import tensorflow as tf
    import os
    
    tf.enable_eager_execution()
    
    checkpoint_directory = "/tmp/training_checkpoints"
    checkpoint_prefix = os.path.join(checkpoint_directory, "ckpt")
    
    checkpoint = tf.train.Checkpoint(optimizer=optimizer, model=model)
    status = checkpoint.restore(tf.train.latest_checkpoint(checkpoint_directory))
    for _ in range(num_training_steps):
      optimizer.minimize( ... )  # Variables will be restored on creation.
    status.assert_consumed()  # Optional sanity checks.
    checkpoint.save(file_prefix=checkpoint_prefix)
    

    More information and example here.

    0 讨论(0)
  • 2020-11-21 12:26

    Tensorflow 2 Docs

    Saving Checkpoints

    Adapted from the docs

    # -------------------------
    # -----  Toy Context  -----
    # -------------------------
    import tensorflow as tf
    
    
    class Net(tf.keras.Model):
        """A simple linear model."""
    
        def __init__(self):
            super(Net, self).__init__()
            self.l1 = tf.keras.layers.Dense(5)
    
        def call(self, x):
            return self.l1(x)
    
    
    def toy_dataset():
        inputs = tf.range(10.0)[:, None]
        labels = inputs * 5.0 + tf.range(5.0)[None, :]
        return (
            tf.data.Dataset.from_tensor_slices(dict(x=inputs, y=labels)).repeat().batch(2)
        )
    
    
    def train_step(net, example, optimizer):
        """Trains `net` on `example` using `optimizer`."""
        with tf.GradientTape() as tape:
            output = net(example["x"])
            loss = tf.reduce_mean(tf.abs(output - example["y"]))
        variables = net.trainable_variables
        gradients = tape.gradient(loss, variables)
        optimizer.apply_gradients(zip(gradients, variables))
        return loss
    
    
    # ----------------------------
    # -----  Create Objects  -----
    # ----------------------------
    
    net = Net()
    opt = tf.keras.optimizers.Adam(0.1)
    dataset = toy_dataset()
    iterator = iter(dataset)
    ckpt = tf.train.Checkpoint(
        step=tf.Variable(1), optimizer=opt, net=net, iterator=iterator
    )
    manager = tf.train.CheckpointManager(ckpt, "./tf_ckpts", max_to_keep=3)
    
    # ----------------------------
    # -----  Train and Save  -----
    # ----------------------------
    
    ckpt.restore(manager.latest_checkpoint)
    if manager.latest_checkpoint:
        print("Restored from {}".format(manager.latest_checkpoint))
    else:
        print("Initializing from scratch.")
    
    for _ in range(50):
        example = next(iterator)
        loss = train_step(net, example, opt)
        ckpt.step.assign_add(1)
        if int(ckpt.step) % 10 == 0:
            save_path = manager.save()
            print("Saved checkpoint for step {}: {}".format(int(ckpt.step), save_path))
            print("loss {:1.2f}".format(loss.numpy()))
    
    
    # ---------------------
    # -----  Restore  -----
    # ---------------------
    
    # In another script, re-initialize objects
    opt = tf.keras.optimizers.Adam(0.1)
    net = Net()
    dataset = toy_dataset()
    iterator = iter(dataset)
    ckpt = tf.train.Checkpoint(
        step=tf.Variable(1), optimizer=opt, net=net, iterator=iterator
    )
    manager = tf.train.CheckpointManager(ckpt, "./tf_ckpts", max_to_keep=3)
    
    # Re-use the manager code above ^
    
    ckpt.restore(manager.latest_checkpoint)
    if manager.latest_checkpoint:
        print("Restored from {}".format(manager.latest_checkpoint))
    else:
        print("Initializing from scratch.")
    
    for _ in range(50):
        example = next(iterator)
        # Continue training or evaluate etc.
    
    

    More links

    • exhaustive and useful tutorial on saved_model -> https://www.tensorflow.org/guide/saved_model

    • keras detailed guide to save models -> https://www.tensorflow.org/guide/keras/save_and_serialize

    Checkpoints capture the exact value of all parameters (tf.Variable objects) used by a model. Checkpoints do not contain any description of the computation defined by the model and thus are typically only useful when source code that will use the saved parameter values is available.

    The SavedModel format on the other hand includes a serialized description of the computation defined by the model in addition to the parameter values (checkpoint). Models in this format are independent of the source code that created the model. They are thus suitable for deployment via TensorFlow Serving, TensorFlow Lite, TensorFlow.js, or programs in other programming languages (the C, C++, Java, Go, Rust, C# etc. TensorFlow APIs).

    (Highlights are my own)


    Tensorflow < 2


    From the docs:

    Save

    # Create some variables.
    v1 = tf.get_variable("v1", shape=[3], initializer = tf.zeros_initializer)
    v2 = tf.get_variable("v2", shape=[5], initializer = tf.zeros_initializer)
    
    inc_v1 = v1.assign(v1+1)
    dec_v2 = v2.assign(v2-1)
    
    # Add an op to initialize the variables.
    init_op = tf.global_variables_initializer()
    
    # Add ops to save and restore all the variables.
    saver = tf.train.Saver()
    
    # Later, launch the model, initialize the variables, do some work, and save the
    # variables to disk.
    with tf.Session() as sess:
      sess.run(init_op)
      # Do some work with the model.
      inc_v1.op.run()
      dec_v2.op.run()
      # Save the variables to disk.
      save_path = saver.save(sess, "/tmp/model.ckpt")
      print("Model saved in path: %s" % save_path)
    

    Restore

    tf.reset_default_graph()
    
    # Create some variables.
    v1 = tf.get_variable("v1", shape=[3])
    v2 = tf.get_variable("v2", shape=[5])
    
    # Add ops to save and restore all the variables.
    saver = tf.train.Saver()
    
    # Later, launch the model, use the saver to restore variables from disk, and
    # do some work with the model.
    with tf.Session() as sess:
      # Restore variables from disk.
      saver.restore(sess, "/tmp/model.ckpt")
      print("Model restored.")
      # Check the values of the variables
      print("v1 : %s" % v1.eval())
      print("v2 : %s" % v2.eval())
    

    simple_save

    Many good answer, for completeness I'll add my 2 cents: simple_save. Also a standalone code example using the tf.data.Dataset API.

    Python 3 ; Tensorflow 1.14

    import tensorflow as tf
    from tensorflow.saved_model import tag_constants
    
    with tf.Graph().as_default():
        with tf.Session() as sess:
            ...
    
            # Saving
            inputs = {
                "batch_size_placeholder": batch_size_placeholder,
                "features_placeholder": features_placeholder,
                "labels_placeholder": labels_placeholder,
            }
            outputs = {"prediction": model_output}
            tf.saved_model.simple_save(
                sess, 'path/to/your/location/', inputs, outputs
            )
    

    Restoring:

    graph = tf.Graph()
    with restored_graph.as_default():
        with tf.Session() as sess:
            tf.saved_model.loader.load(
                sess,
                [tag_constants.SERVING],
                'path/to/your/location/',
            )
            batch_size_placeholder = graph.get_tensor_by_name('batch_size_placeholder:0')
            features_placeholder = graph.get_tensor_by_name('features_placeholder:0')
            labels_placeholder = graph.get_tensor_by_name('labels_placeholder:0')
            prediction = restored_graph.get_tensor_by_name('dense/BiasAdd:0')
    
            sess.run(prediction, feed_dict={
                batch_size_placeholder: some_value,
                features_placeholder: some_other_value,
                labels_placeholder: another_value
            })
    

    Standalone example

    Original blog post

    The following code generates random data for the sake of the demonstration.

    1. We start by creating the placeholders. They will hold the data at runtime. From them, we create the Dataset and then its Iterator. We get the iterator's generated tensor, called input_tensor which will serve as input to our model.
    2. The model itself is built from input_tensor: a GRU-based bidirectional RNN followed by a dense classifier. Because why not.
    3. The loss is a softmax_cross_entropy_with_logits, optimized with Adam. After 2 epochs (of 2 batches each), we save the "trained" model with tf.saved_model.simple_save. If you run the code as is, then the model will be saved in a folder called simple/ in your current working directory.
    4. In a new graph, we then restore the saved model with tf.saved_model.loader.load. We grab the placeholders and logits with graph.get_tensor_by_name and the Iterator initializing operation with graph.get_operation_by_name.
    5. Lastly we run an inference for both batches in the dataset, and check that the saved and restored model both yield the same values. They do!

    Code:

    import os
    import shutil
    import numpy as np
    import tensorflow as tf
    from tensorflow.python.saved_model import tag_constants
    
    
    def model(graph, input_tensor):
        """Create the model which consists of
        a bidirectional rnn (GRU(10)) followed by a dense classifier
    
        Args:
            graph (tf.Graph): Tensors' graph
            input_tensor (tf.Tensor): Tensor fed as input to the model
    
        Returns:
            tf.Tensor: the model's output layer Tensor
        """
        cell = tf.nn.rnn_cell.GRUCell(10)
        with graph.as_default():
            ((fw_outputs, bw_outputs), (fw_state, bw_state)) = tf.nn.bidirectional_dynamic_rnn(
                cell_fw=cell,
                cell_bw=cell,
                inputs=input_tensor,
                sequence_length=[10] * 32,
                dtype=tf.float32,
                swap_memory=True,
                scope=None)
            outputs = tf.concat((fw_outputs, bw_outputs), 2)
            mean = tf.reduce_mean(outputs, axis=1)
            dense = tf.layers.dense(mean, 5, activation=None)
    
            return dense
    
    
    def get_opt_op(graph, logits, labels_tensor):
        """Create optimization operation from model's logits and labels
    
        Args:
            graph (tf.Graph): Tensors' graph
            logits (tf.Tensor): The model's output without activation
            labels_tensor (tf.Tensor): Target labels
    
        Returns:
            tf.Operation: the operation performing a stem of Adam optimizer
        """
        with graph.as_default():
            with tf.variable_scope('loss'):
                loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(
                        logits=logits, labels=labels_tensor, name='xent'),
                        name="mean-xent"
                        )
            with tf.variable_scope('optimizer'):
                opt_op = tf.train.AdamOptimizer(1e-2).minimize(loss)
            return opt_op
    
    
    if __name__ == '__main__':
        # Set random seed for reproducibility
        # and create synthetic data
        np.random.seed(0)
        features = np.random.randn(64, 10, 30)
        labels = np.eye(5)[np.random.randint(0, 5, (64,))]
    
        graph1 = tf.Graph()
        with graph1.as_default():
            # Random seed for reproducibility
            tf.set_random_seed(0)
            # Placeholders
            batch_size_ph = tf.placeholder(tf.int64, name='batch_size_ph')
            features_data_ph = tf.placeholder(tf.float32, [None, None, 30], 'features_data_ph')
            labels_data_ph = tf.placeholder(tf.int32, [None, 5], 'labels_data_ph')
            # Dataset
            dataset = tf.data.Dataset.from_tensor_slices((features_data_ph, labels_data_ph))
            dataset = dataset.batch(batch_size_ph)
            iterator = tf.data.Iterator.from_structure(dataset.output_types, dataset.output_shapes)
            dataset_init_op = iterator.make_initializer(dataset, name='dataset_init')
            input_tensor, labels_tensor = iterator.get_next()
    
            # Model
            logits = model(graph1, input_tensor)
            # Optimization
            opt_op = get_opt_op(graph1, logits, labels_tensor)
    
            with tf.Session(graph=graph1) as sess:
                # Initialize variables
                tf.global_variables_initializer().run(session=sess)
                for epoch in range(3):
                    batch = 0
                    # Initialize dataset (could feed epochs in Dataset.repeat(epochs))
                    sess.run(
                        dataset_init_op,
                        feed_dict={
                            features_data_ph: features,
                            labels_data_ph: labels,
                            batch_size_ph: 32
                        })
                    values = []
                    while True:
                        try:
                            if epoch < 2:
                                # Training
                                _, value = sess.run([opt_op, logits])
                                print('Epoch {}, batch {} | Sample value: {}'.format(epoch, batch, value[0]))
                                batch += 1
                            else:
                                # Final inference
                                values.append(sess.run(logits))
                                print('Epoch {}, batch {} | Final inference | Sample value: {}'.format(epoch, batch, values[-1][0]))
                                batch += 1
                        except tf.errors.OutOfRangeError:
                            break
                # Save model state
                print('\nSaving...')
                cwd = os.getcwd()
                path = os.path.join(cwd, 'simple')
                shutil.rmtree(path, ignore_errors=True)
                inputs_dict = {
                    "batch_size_ph": batch_size_ph,
                    "features_data_ph": features_data_ph,
                    "labels_data_ph": labels_data_ph
                }
                outputs_dict = {
                    "logits": logits
                }
                tf.saved_model.simple_save(
                    sess, path, inputs_dict, outputs_dict
                )
                print('Ok')
        # Restoring
        graph2 = tf.Graph()
        with graph2.as_default():
            with tf.Session(graph=graph2) as sess:
                # Restore saved values
                print('\nRestoring...')
                tf.saved_model.loader.load(
                    sess,
                    [tag_constants.SERVING],
                    path
                )
                print('Ok')
                # Get restored placeholders
                labels_data_ph = graph2.get_tensor_by_name('labels_data_ph:0')
                features_data_ph = graph2.get_tensor_by_name('features_data_ph:0')
                batch_size_ph = graph2.get_tensor_by_name('batch_size_ph:0')
                # Get restored model output
                restored_logits = graph2.get_tensor_by_name('dense/BiasAdd:0')
                # Get dataset initializing operation
                dataset_init_op = graph2.get_operation_by_name('dataset_init')
    
                # Initialize restored dataset
                sess.run(
                    dataset_init_op,
                    feed_dict={
                        features_data_ph: features,
                        labels_data_ph: labels,
                        batch_size_ph: 32
                    }
    
                )
                # Compute inference for both batches in dataset
                restored_values = []
                for i in range(2):
                    restored_values.append(sess.run(restored_logits))
                    print('Restored values: ', restored_values[i][0])
    
        # Check if original inference and restored inference are equal
        valid = all((v == rv).all() for v, rv in zip(values, restored_values))
        print('\nInferences match: ', valid)
    

    This will print:

    $ python3 save_and_restore.py
    
    Epoch 0, batch 0 | Sample value: [-0.13851789 -0.3087595   0.12804556  0.20013677 -0.08229901]
    Epoch 0, batch 1 | Sample value: [-0.00555491 -0.04339041 -0.05111827 -0.2480045  -0.00107776]
    Epoch 1, batch 0 | Sample value: [-0.19321944 -0.2104792  -0.00602257  0.07465433  0.11674127]
    Epoch 1, batch 1 | Sample value: [-0.05275984  0.05981954 -0.15913513 -0.3244143   0.10673307]
    Epoch 2, batch 0 | Final inference | Sample value: [-0.26331693 -0.13013336 -0.12553    -0.04276478  0.2933622 ]
    Epoch 2, batch 1 | Final inference | Sample value: [-0.07730117  0.11119192 -0.20817074 -0.35660955  0.16990358]
    
    Saving...
    INFO:tensorflow:Assets added to graph.
    INFO:tensorflow:No assets to write.
    INFO:tensorflow:SavedModel written to: b'/some/path/simple/saved_model.pb'
    Ok
    
    Restoring...
    INFO:tensorflow:Restoring parameters from b'/some/path/simple/variables/variables'
    Ok
    Restored values:  [-0.26331693 -0.13013336 -0.12553    -0.04276478  0.2933622 ]
    Restored values:  [-0.07730117  0.11119192 -0.20817074 -0.35660955  0.16990358]
    
    Inferences match:  True
    
    0 讨论(0)
提交回复
热议问题