I have a base class MyBase that contains a pure virtual function:
void PrintStartMessage() = 0
I want each derived class to call it in their co
I can offer a work around / "companion" to your abstract base class using MACROS rather than templates, or staying purely within the "natural" constraints of the language.
Create a base class with an init function e.g.:
class BaseClass
{
public:
BaseClass(){}
virtual ~BaseClass(){}
virtual void virtualInit( const int i=0 )=0;
};
Then, add a macro for a constructor. Note there is no reason to not add multiple constructor definitions here, or have multiple macros to choose from.
#define BASECLASS_INT_CONSTRUCTOR( clazz ) \
clazz( const int i ) \
{ \
virtualInit( i ); \
}
Finally, add the macro to your derivation:
class DervivedClass : public BaseClass
{
public:
DervivedClass();
BASECLASS_INT_CONSTRUCTOR( DervivedClass )
virtual ~DervivedClass();
void virtualInit( const int i=0 )
{
x_=i;
}
int x_;
};
You shouldn't call a virtual
function in a constructor. Period. You'll have to find some workaround, like making PrintStartMessage
non-virtual
and putting the call explicitly in every constructor.
There are many articles that explain why you should never call virtual functions in constructor and destructor in C++. Take a look here and here for details what happens behind the scene during such calls.
In short, objects are constructed from the base up to the derived. So when you try to call a virtual function from the base class constructor, overriding from derived classes hasn't yet happened because the derived constructors haven't been called yet.
I know this is an old question, but I came across the same question while working on my program.
If your goal is to reduce code duplication by having the Base class handle the shared initialization code while requiring the Derived classes to specify the code unique to them in a pure virtual method, this is what I decided on.
#include <iostream>
class MyBase
{
public:
virtual void UniqueCode() = 0;
MyBase() {};
void init(MyBase & other)
{
std::cout << "Shared Code before the unique code" << std::endl;
other.UniqueCode();
std::cout << "Shared Code after the unique code" << std::endl << std::endl;
}
};
class FirstDerived : public MyBase
{
public:
FirstDerived() : MyBase() { init(*this); };
void UniqueCode()
{
std::cout << "Code Unique to First Derived Class" << std::endl;
}
private:
using MyBase::init;
};
class SecondDerived : public MyBase
{
public:
SecondDerived() : MyBase() { init(*this); };
void UniqueCode()
{
std::cout << "Code Unique to Second Derived Class" << std::endl;
}
private:
using MyBase::init;
};
int main()
{
FirstDerived first;
SecondDerived second;
}
The output is:
Shared Code before the unique code
Code Unique to First Derived Class
Shared Code after the unique code
Shared Code before the unique code
Code Unique to Second Derived Class
Shared Code after the unique code
Trying to call a pure abstract method from a derived while that object is still being constructed is unsafe. It's like trying to fill gas into a car but that car is still on the assembly line and the gas tank hasn't been put in yet.
The closest you can get to doing something like that is to fully construct your object first and then calling the method after:
template <typename T>
T construct_and_print()
{
T obj;
obj.PrintStartMessage();
return obj;
}
int main()
{
Derived derived = construct_and_print<Derived>();
}
Facing the same problem, I imaginated a (not perfect) solution. The idea is to provide a certificate to the base class that the pure virtual init function will be called after the construction.
class A
{
private:
static const int checkValue;
public:
A(int certificate);
A(const A& a);
virtual ~A();
virtual void init() = 0;
public:
template <typename T> static T create();
template <typeneme T> static T* create_p();
template <typename T, typename U1> static T create(const U1& u1);
template <typename T, typename U1> static T* create_p(const U1& u1);
//... all the required possibilities can be generated by prepro loops
};
const int A::checkValue = 159736482; // or any random value
A::A(int certificate)
{
assert(certificate == A::checkValue);
}
A::A(const A& a)
{}
A::~A()
{}
template <typename T>
T A::create()
{
T t(A::checkValue);
t.init();
return t;
}
template <typename T>
T* A::create_p()
{
T* t = new T(A::checkValue);
t->init();
return t;
}
template <typename T, typename U1>
T A::create(const U1& u1)
{
T t(A::checkValue, u1);
t.init();
return t;
}
template <typename T, typename U1>
T* A::create_p(const U1& u1)
{
T* t = new T(A::checkValue, u1);
t->init();
return t;
}
class B : public A
{
public:
B(int certificate);
B(const B& b);
virtual ~B();
virtual void init();
};
B::B(int certificate) :
A(certificate)
{}
B::B(const B& b) :
A(b)
{}
B::~B()
{}
void B::init()
{
std::cout << "call B::init()" << std::endl;
}
class C : public A
{
public:
C(int certificate, double x);
C(const C& c);
virtual ~C();
virtual void init();
private:
double x_;
};
C::C(int certificate, double x) :
A(certificate)
x_(x)
{}
C::C(const C& c) :
A(c)
x_(c.x_)
{}
C::~C()
{}
void C::init()
{
std::cout << "call C::init()" << std::endl;
}
Then, the user of the class can't construct an instance without giving the certificate, but the certificate can only be produced by the creation functions:
B b = create<B>(); // B::init is called
C c = create<C,double>(3.1415926535); // C::init is called
Moreover, the user can't create new classes inheriting from A B or C without implementing the certificate transmission in the constructor. Then, the base class A has the warranty that init will be called after construction.