I rethrow an exception with \"throw;\", but the stacktrace is incorrect:
static void Main(string[] args) {
try {
try {
throw new Exce
You can preserve stack trace using
ExceptionDispatchInfo.Capture(ex);
Here is code sample:
static void CallAndThrow()
{
throw new ApplicationException("Test app ex", new Exception("Test inner ex"));
}
static void Main(string[] args)
{
try
{
try
{
try
{
CallAndThrow();
}
catch (Exception ex)
{
var dispatchException = ExceptionDispatchInfo.Capture(ex);
// rollback tran, etc
dispatchException.Throw();
}
}
catch (Exception ex)
{
var dispatchException = ExceptionDispatchInfo.Capture(ex);
// other rollbacks
dispatchException.Throw();
}
}
catch (Exception ex)
{
Console.WriteLine(ex.Message);
Console.WriteLine(ex.InnerException.Message);
Console.WriteLine(ex.StackTrace);
}
Console.ReadLine();
}
The output will be something like:
Test app ex Test inner ex at TestApp.Program.CallAndThrow() in D:\Projects\TestApp\TestApp\Program.cs:line 19 at TestApp.Program.Main(String[] args) in D:\Projects\TestApp\TestApp\Program.cs:line 30 --- End of stack trace from previous location where exception was thrown --- at System.Runtime.ExceptionServices.ExceptionDispatchInfo.Throw() at TestApp.Program.Main(String[] args) in D:\Projects\TestApp\TestApp\Program.cs:line 38 --- End of stack trace from previous location where exception was thrown --- at System.Runtime.ExceptionServices.ExceptionDispatchInfo.Throw() at TestApp.Program.Main(String[] args) in D:\Projects\TestApp\TestApp\Program.cs:line 47
Not sure whether this is by design, but I think it has always been like that.
If the original throw new Exception is in a separate method, then the result for throw should have the original method name and line number and then the line number in main where the exception is re-thrown.
If you use throw ex, then the result will just be the line in main where the exception is rethrow.
In other words, throw ex loses all the stacktrace, whereas throw preserves the stack trace history (ie details of the lower level methods). But if your exception is generated by the same method as your rethrow, then you can lose some information.
NB. If you write a very simple and small test program, the Framework can sometimes optimise things and change a method to be inline code which means the results may differ from a 'real' program.
OK, there seems to be a bug in the .NET Framework, if you throw an exception, and rethrow it in the same method, the original line number is lost (it will be the last line of the method).
Fortunatelly, a clever guy named Fabrice MARGUERIE found a solution to this bug. Below is my version, which you can test in this .NET Fiddle.
private static void RethrowExceptionButPreserveStackTrace(Exception exception)
{
System.Reflection.MethodInfo preserveStackTrace = typeof(Exception).GetMethod("InternalPreserveStackTrace",
System.Reflection.BindingFlags.Instance | System.Reflection.BindingFlags.NonPublic);
preserveStackTrace.Invoke(exception, null);
throw exception;
}
Now catch the exception as usually, but instead of throw; just call this method, and voila, the original line number will be preserved!
Do you want your right line number? Just use one try/catch per method. In systems, well... just in the UI layer, not in logic or data access, this is very annoying, because if you need database transactions, well, they shouldn't be in the UI layer, and you won't have the right line number, but if you don't need them, don't rethrow with nor without an exception in catch...
5 minutes sample code:
Menu File -> New Project, place three buttons, and call the following code in each one:
private void button1_Click(object sender, EventArgs e)
{
try
{
Class1.testWithoutTC();
}
catch (Exception ex)
{
MessageBox.Show(ex.Message + Environment.NewLine + ex.StackTrace + Environment.NewLine + Environment.NewLine + "In. Ex.: " + ex.InnerException);
}
}
private void button2_Click(object sender, EventArgs e)
{
try
{
Class1.testWithTC1();
}
catch (Exception ex)
{
MessageBox.Show(ex.Message + Environment.NewLine + ex.StackTrace + Environment.NewLine + Environment.NewLine + "In. Ex.: " + ex.InnerException);
}
}
private void button3_Click(object sender, EventArgs e)
{
try
{
Class1.testWithTC2();
}
catch (Exception ex)
{
MessageBox.Show(ex.Message + Environment.NewLine + ex.StackTrace + Environment.NewLine + Environment.NewLine + "In. Ex.: " + ex.InnerException);
}
}
Now, create a new Class:
class Class1
{
public int a;
public static void testWithoutTC()
{
Class1 obj = null;
obj.a = 1;
}
public static void testWithTC1()
{
try
{
Class1 obj = null;
obj.a = 1;
}
catch
{
throw;
}
}
public static void testWithTC2()
{
try
{
Class1 obj = null;
obj.a = 1;
}
catch (Exception ex)
{
throw ex;
}
}
}
Run... the first button is beautiful!
It's something that can be considered as expected.
Modifying stack trace is usual case if you specify throw ex;
, FxCop will than notify you that stack is modified. In case you make throw;
, no warning is generated, but still, the trace will be modified.
So unfortunately for now it's the best not to catch the ex or throw it as an inner one.
I think it should be considered as a Windows impact or smth like that - edited.
Jeff Richter describes this situation in more detail in his "CLR via C#":
The following code throws the same exception object that it caught and causes the CLR to reset its starting point for the exception:
private void SomeMethod() { try { ... } catch (Exception e) { ... throw e; // CLR thinks this is where exception originated. // FxCop reports this as an error } }
In contrast, if you re-throw an exception object by using the throw keyword by itself, the CLR doesn’t reset the stack’s starting point. The following code re-throws the same exception object that it caught, causing the CLR to not reset its starting point for the exception:
private void SomeMethod() { try { ... } catch (Exception e) { ... throw; // This has no effect on where the CLR thinks the exception // originated. FxCop does NOT report this as an error } }
In fact, the only difference between these two code fragments is what the CLR thinks is the original location where the exception was thrown. Unfortunately, when you throw or rethrow an exception, Windows does reset the stack’s starting point. So if the exception becomes unhandled, the stack location that gets reported to Windows Error Reporting is the location of the last throw or re-throw, even though the CLR knows the stack location where the original exception was thrown. This is unfortunate because it makes debugging applications that have failed in the field much more difficult. Some developers have found this so intolerable that they have chosen a different way to implement their code to ensure that the stack trace truly reflects the location where an exception was originally thrown:
private void SomeMethod() { Boolean trySucceeds = false; try { ... trySucceeds = true; } finally { if (!trySucceeds) { /* catch code goes in here */ } } }
This is a well known limitation in the Windows version of the CLR. It uses Windows' built-in support for exception handling (SEH). Problem is, it is stack frame based and a method has only one stack frame. You can easily solve the problem by moving the inner try/catch block into another helper method, thus creating another stack frame. Another consequence of this limitation is that the JIT compiler won't inline any method that contains a try statement.