It's figuring out if n
is either 0 or an exact power of two.
It works because a binary power of two is of the form 1000...000
and subtracting one will give you 111...111
. Then, when you AND those together, you get zero, such as with:
1000 0000 0000 0000
& 111 1111 1111 1111
==== ==== ==== ====
= 0000 0000 0000 0000
Any non-power-of-two input value (other than zero) will not give you zero when you perform that operation.
For example, let's try all the 4-bit combinations:
<----- binary ---->
n n n-1 n&(n-1)
-- ---- ---- -------
0 0000 0111 0000 *
1 0001 0000 0000 *
2 0010 0001 0000 *
3 0011 0010 0010
4 0100 0011 0000 *
5 0101 0100 0100
6 0110 0101 0100
7 0111 0110 0110
8 1000 0111 0000 *
9 1001 1000 1000
10 1010 1001 1000
11 1011 1010 1010
12 1100 1011 1000
13 1101 1100 1100
14 1110 1101 1100
15 1111 1110 1110
You can see that only 0
and the powers of two (1
, 2
, 4
and 8
) result in a 0000/false
bit pattern, all others are non-zero or true
.