Given a coordinate (lat, long), I am trying to calculate a square bounding box that is a given distance (e.g. 50km) away from the coordinate. So as input I have lat, long a
Based on IronMan response:
/**
* Calculate the lat and len of a square around a point.
* @return latMin, latMax, lngMin, lngMax
*/
public static double[] calculateSquareRadius(double lat, double lng, double radius) {
double R = 6371; // earth radius in km
double latMin = lat - Math.toDegrees(radius/R);
double latMax = lat + Math.toDegrees(radius/R);
double lngMin = lng - Math.toDegrees(radius/R/Math.cos(Math.toRadians(lat)));
double lngMax = lng + Math.toDegrees(radius/R/Math.cos(Math.toRadians(lat)));
return new double[] {latMin, latMax, lngMin, lngMax};
}
I wrote an article about finding the bounding coordinates:
http://JanMatuschek.de/LatitudeLongitudeBoundingCoordinates
The article explains the formulae and also provides a Java implementation. (It also shows why IronMan's formula for the min/max longitude is inaccurate.)
import com.vividsolutions.jts.geom.Envelope;
...
Envelope env = new Envelope(centerPoint.getCoordinate());
env.expandBy(distance_in_degrees);
...
Now env contains your envelope. It's not actually a "square" (whatever that means on the surface of a sphere), but it should do.
You should note that the distance in degrees will depend on the latitude of the center point. At the equator, 1 degree of latitude is about 111km, but in New York, it's only about 75km.
The really cool thing is that you can toss all your points into a com.vividsolutions.jts.index.strtree.STRtree
and then use it to quickly calculate points inside that Envelope.
Here is a simple solution that I used to generate bounding box coordinates that I use with GeoNames citieJSON API to get nearby big cities from a gps decimal coordinate.
This is a Java method from my GitHub repository: FusionTableModifyJava
I had a decimal GPS location and I needed to find the biggest city/state "near" that location. I needed a relatively accurate bounding box to pass to the citiesJSON GeoNames webservice to get back the biggest city in that bounding box. I pass the location and the "radius" I am interested in (in km) and it gives back the north, south, east, west decimal coordinates needed to pass to citiesJSON.
(I found these resources useful in doing my research:
Calculate distance, bearing and more between Latitude/Longitude points.
Longitude - Wikipedia)
It is not super accurate but accurate enough for what I was using it for:
// Compute bounding Box coordinates for use with Geonames API.
class BoundingBox
{
public double north, south, east, west;
public BoundingBox(String location, float km)
{
//System.out.println(location + " : "+ km);
String[] parts = location.replaceAll("\\s","").split(","); //remove spaces and split on ,
double lat = Double.parseDouble(parts[0]);
double lng = Double.parseDouble(parts[1]);
double adjust = .008983112; // 1km in degrees at equator.
//adjust = 0.008983152770714983; // 1km in degrees at equator.
//System.out.println("deg: "+(1.0/40075.017)*360.0);
north = lat + ( km * adjust);
south = lat - ( km * adjust);
double lngRatio = 1/Math.cos(Math.toRadians(lat)); //ratio for lng size
//System.out.println("lngRatio: "+lngRatio);
east = lng + (km * adjust) * lngRatio;
west = lng - (km * adjust) * lngRatio;
}
}
double R = 6371; // earth radius in km
double radius = 50; // km
double x1 = lon - Math.toDegrees(radius/R/Math.cos(Math.toRadians(lat)));
double x2 = lon + Math.toDegrees(radius/R/Math.cos(Math.toRadians(lat)));
double y1 = lat + Math.toDegrees(radius/R);
double y2 = lat - Math.toDegrees(radius/R);
Although I would also recommend JTS.
All of the previous answers are only partially correct. Specially in region like Australia, they always include pole and calculate a very large rectangle even for 10kms.
Specially the algorithm by Jan Philip Matuschek at http://janmatuschek.de/LatitudeLongitudeBoundingCoordinates#UsingIndex included a very large rectangle from (-37, -90, -180, 180) for almost every point in Australia. This hits a large users in database and distance have to be calculated for all of the users in almost half the country.
I found that the Drupal API Earth Algorithm by Rochester Institute of Technology works better around pole as well as elsewhere and is much easier to implement.
https://www.rit.edu/drupal/api/drupal/sites%21all%21modules%21location%21earth.inc/7.54
Use earth_latitude_range
and earth_longitude_range
from the above algorithm for calculating bounding rectangle
Here is the implementation is Java
/**
* Get bouding rectangle using Drupal Earth Algorithm
* @see https://www.rit.edu/drupal/api/drupal/sites%21all%21modules%21location%21earth.inc/7.54
* @param lat
* @param lng
* @param distance
* @return
*/
default BoundingRectangle getBoundingRectangleDrupalEarthAlgo(double lat, double lng, int distance) {
lng = Math.toRadians(lng);
lat = Math.toRadians(lat);
double radius = earth_radius(lat);
List<Double> retLats = earth_latitude_range(lat, radius, distance);
List<Double> retLngs = earth_longitude_range(lat, lng, radius, distance);
return new BoundingRectangle(retLats.get(0), retLats.get(1), retLngs.get(0), retLngs.get(1));
}
/**
* Calculate latitude range based on earths radius at a given point
* @param latitude
* @param longitude
* @param distance
* @return
*/
default List<Double> earth_latitude_range(double lat, double radius, double distance) {
// Estimate the min and max latitudes within distance of a given location.
double angle = distance / radius;
double minlat = lat - angle;
double maxlat = lat + angle;
double rightangle = Math.PI / 2;
// Wrapped around the south pole.
if (minlat < -rightangle) {
double overshoot = -minlat - rightangle;
minlat = -rightangle + overshoot;
if (minlat > maxlat) {
maxlat = minlat;
}
minlat = -rightangle;
}
// Wrapped around the north pole.
if (maxlat > rightangle) {
double overshoot = maxlat - rightangle;
maxlat = rightangle - overshoot;
if (maxlat < minlat) {
minlat = maxlat;
}
maxlat = rightangle;
}
List<Double> ret = new ArrayList<>();
ret.add((minlat));
ret.add((maxlat));
return ret;
}
/**
* Calculate longitude range based on earths radius at a given point
* @param lat
* @param lng
* @param earth_radius
* @param distance
* @return
*/
default List<Double> earth_longitude_range(double lat, double lng, double earth_radius, int distance) {
// Estimate the min and max longitudes within distance of a given location.
double radius = earth_radius * Math.cos(lat);
double angle;
if (radius > 0) {
angle = Math.abs(distance / radius);
angle = Math.min(angle, Math.PI);
}
else {
angle = Math.PI;
}
double minlong = lng - angle;
double maxlong = lng + angle;
if (minlong < -Math.PI) {
minlong = minlong + Math.PI * 2;
}
if (maxlong > Math.PI) {
maxlong = maxlong - Math.PI * 2;
}
List<Double> ret = new ArrayList<>();
ret.add((minlong));
ret.add((maxlong));
return ret;
}
/**
* Calculate earth radius at given latitude
* @param latitude
* @return
*/
default Double earth_radius(double latitude) {
// Estimate the Earth's radius at a given latitude.
// Default to an approximate average radius for the United States.
double lat = Math.toRadians(latitude);
double x = Math.cos(lat) / 6378137.0;
double y = Math.sin(lat) / (6378137.0 * (1 - (1 / 298.257223563)));
//Make sure earth's radius is in km , not meters
return (1 / (Math.sqrt(x * x + y * y)))/1000;
}
And use the distance calculation formula documented by google maps to calculate distance
https://developers.google.com/maps/solutions/store-locator/clothing-store-locator#outputting-data-as-xml-using-php
To search by kilometers instead of miles, replace 3959 with 6371. For (Lat, Lng) = (37, -122) and a Markers table with columns lat and lng, the formula is:
SELECT id, ( 3959 * acos( cos( radians(37) ) * cos( radians( lat ) ) * cos( radians( lng ) - radians(-122) ) + sin( radians(37) ) * sin( radians( lat ) ) ) ) AS distance FROM markers HAVING distance < 25 ORDER BY distance LIMIT 0 , 20;