just look at cv2.randu() or cv.randn(), it's all pretty similar to matlab already, i guess.
let's play a bit ;) :
import cv2
import numpy as np
>>> im = np.empty((5,5), np.uint8) # needs preallocated input image
>>> im
array([[248, 168, 58, 2, 1], # uninitialized memory counts as random, too ? fun ;)
[ 0, 100, 2, 0, 101],
[ 0, 0, 106, 2, 0],
[131, 2, 0, 90, 3],
[ 0, 100, 1, 0, 83]], dtype=uint8)
>>> im = np.zeros((5,5), np.uint8) # seriously now.
>>> im
array([[0, 0, 0, 0, 0],
[0, 0, 0, 0, 0],
[0, 0, 0, 0, 0],
[0, 0, 0, 0, 0],
[0, 0, 0, 0, 0]], dtype=uint8)
>>> cv2.randn(im,(0),(99)) # normal
array([[ 0, 76, 0, 129, 0],
[ 0, 0, 0, 188, 27],
[ 0, 152, 0, 0, 0],
[ 0, 0, 134, 79, 0],
[ 0, 181, 36, 128, 0]], dtype=uint8)
>>> cv2.randu(im,(0),(99)) # uniform
array([[19, 53, 2, 86, 82],
[86, 73, 40, 64, 78],
[34, 20, 62, 80, 7],
[24, 92, 37, 60, 72],
[40, 12, 27, 33, 18]], dtype=uint8)
to apply it to an existing image, just generate noise in the desired range, and add it:
img = ...
noise = ...
image = img + noise