I\'m trying to figure out a simple way to do something like this with dplyr (data set = dat, variable = x):
day$x[dat$x<0]=NA
Should be
You can use replace
which is a bit faster than ifelse
:
dat <- dat %>% mutate(x = replace(x, x<0, NA))
You can speed it up a bit more by supplying an index to replace
using which
:
dat <- dat %>% mutate(x = replace(x, which(x<0L), NA))
On my machine, this cut the time to a third, see below.
Here's a little comparison of the different answers, which is only indicative of course:
set.seed(24)
dat <- data.frame(x=rnorm(1e6))
system.time(dat %>% mutate(x = replace(x, x<0, NA)))
User System elapsed
0.03 0.00 0.03
system.time(dat %>% mutate(x=ifelse(x<0,NA,x)))
User System elapsed
0.30 0.00 0.29
system.time(setDT(dat)[x<0,x:=NA])
User System elapsed
0.01 0.00 0.02
system.time(dat$x[dat$x<0] <- NA)
User System elapsed
0.03 0.00 0.03
system.time(dat %>% mutate(x = "is.na<-"(x, x < 0)))
User System elapsed
0.05 0.00 0.05
system.time(dat %>% mutate(x = NA ^ (x < 0) * x))
User System elapsed
0.01 0.00 0.02
system.time(dat %>% mutate(x = replace(x, which(x<0), NA)))
User System elapsed
0.01 0.00 0.01
(I'm using dplyr_0.3.0.2 and data.table_1.9.4)
Since we're always very interested in benchmarking, especially in the course of data.table-vs-dplyr discussions I provide another benchmark of 3 of the answers using microbenchmark and the data by akrun. Note that I modified dplyr1
to be the updated version of my answer:
set.seed(285)
dat1 <- dat <- data.frame(x=sample(-5:5, 1e8, replace=TRUE), y=rnorm(1e8))
dtbl1 <- function() {setDT(dat)[x<0,x:=NA]}
dplr1 <- function() {dat1 %>% mutate(x = replace(x, which(x<0L), NA))}
dplr2 <- function() {dat1 %>% mutate(x = NA ^ (x < 0) * x)}
microbenchmark(dtbl1(), dplr1(), dplr2(), unit='relative', times=20L)
#Unit: relative
# expr min lq median uq max neval
# dtbl1() 1.091208 4.319863 4.194086 4.162326 4.252482 20
# dplr1() 1.000000 1.000000 1.000000 1.000000 1.000000 20
# dplr2() 6.251354 5.529948 5.344294 5.311595 5.190192 20
The most natural approach in dplyr is to use the na_if
function.
For one variable:
dat %<>% mutate(x = na_if(x, x < 0))
For all variables:
dat %<>% mutate_all(~ na_if(., . < 0))
If interested in replacing a specific value, instead of a range for all variables:
dat %<>% mutate_all(na_if, 0)
Note that I am using the %<>%
operator from the magrittr
package.
Using replace
directly on the x
column and not using mutate
also works.
dat$x <- replace(dat$x, dat$x<0, NA)
You can use the is.na<-
function:
dat %>% mutate(x = "is.na<-"(x, x < 0))
Or you can use mathematical operators:
dat %>% mutate(x = NA ^ (x < 0) * x)
If you are using data.table
, the below code is faster
library(data.table)
setDT(dat)[x<0,x:=NA]
Using data.table_1.9.5
and dplyr_0.3.0.9000
library(microbenchmark)
set.seed(285)
dat <- data.frame(x=sample(-5:5, 1e7, replace=TRUE), y=rnorm(1e7))
dtbl1 <- function() {as.data.table(dat)[x<0,x:=NA]}
dplr1 <- function() {dat %>% mutate(x = replace(x, x<0, NA))}
microbenchmark(dtbl1(), dplr1(), unit='relative', times=20L)
#Unit: relative
#expr min lq mean median uq max neval cld
#dtbl1() 1.00000 1.000000 1.000000 1.000000 1.000000 1.000000 20 a
#dplr1() 2.06654 2.064405 1.927762 1.795962 1.881821 1.885655 20 b
Using data.table_1.9.5
and dplyr_0.4.0
. I used a slightly bigger dataset and replaced as.data.table
with setDT
(Included @Sven Hohenstein's faster function as well.)
set.seed(285)
dat <- data.frame(x=sample(-5:5, 1e8, replace=TRUE), y=rnorm(1e8))
dat1 <- copy(dat)
dtbl1 <- function() {setDT(dat)[x<0,x:=NA]}
dplr1 <- function() {dat1 %>% mutate(x = replace(x, x<0, NA))}
dplr2 <- function() {dat1 %>% mutate(x = NA ^ (x < 0) * x)}
microbenchmark(dtbl1(), dplr1(), dplr2(), unit='relative', times=20L)
#Unit: relative
# expr min lq mean median uq max neval cld
#dtbl1() 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 20 a
#dplr1() 2.523945 2.542412 2.536255 2.579379 2.518336 2.486757 20 b
#dplr2() 1.139216 1.089992 1.088753 1.058653 1.093906 1.100690 20 a
At the request of @docendo discimus, benchmarking again his "new" version of dplyr
using data.table_1.9.5
and dplyr_0.4.0
.
NOTE: Because there is a change in @docendo discimus code, I changed 0
to 0L
for the data.table`
set.seed(285)
dat <- data.frame(x=sample(-5:5, 1e8, replace=TRUE), y=rnorm(1e8))
dat1 <- copy(dat)
dtbl1 <- function() {setDT(dat)[x<0L, x:= NA]}
dplr1 <- function() {dat1 %>% mutate(x = replace(x, which(x<0L), NA))}
dplr2 <- function() {dat1 %>% mutate(x = NA ^ (x < 0) * x)}
microbenchmark(dtbl1(), dplr1(), dplr2(), unit='relative', times=20L)
#Unit: relative
#expr min lq mean median uq max neval cld
#dtbl1() 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 20 a
#dplr1() 2.186055 2.183432 2.142293 2.222458 2.194450 1.442444 20 b
#dplr2() 2.919854 2.925795 2.852528 2.942700 2.954657 1.904249 20 c
set.seed(24)
dat <- data.frame(x=sample(-5:5, 25, replace=TRUE), y=rnorm(25))