I want to apply a lambda function to a DataFrame column using if...elif...else within the lambda function.
The df and the code are smth. like:
df=pd.
Nest if .. else
s:
lambda x: x*10 if x<2 else (x**2 if x<4 else x+10)
I do not recommend the use of apply
here: it should be avoided if there are better alternatives.
For example, if you are performing the following operation on a Series:
if cond1:
exp1
elif cond2:
exp2
else:
exp3
This is usually a good use case for np.where
or np.select
.
numpy.where
The if
else
chain above can be written using
np.where(cond1, exp1, np.where(cond2, exp2, ...))
np.where
allows nesting. With one level of nesting, your problem can be solved with,
df['three'] = (
np.where(
df['one'] < 2,
df['one'] * 10,
np.where(df['one'] < 4, df['one'] ** 2, df['one'] + 10))
df
one two three
0 1 6 10
1 2 7 4
2 3 8 9
3 4 9 14
4 5 10 15
numpy.select
Allows for flexible syntax and is easily extensible. It follows the form,
np.select([cond1, cond2, ...], [exp1, exp2, ...])
Or, in this case,
np.select([cond1, cond2], [exp1, exp2], default=exp3)
df['three'] = (
np.select(
condlist=[df['one'] < 2, df['one'] < 4],
choicelist=[df['one'] * 10, df['one'] ** 2],
default=df['one'] + 10))
df
one two three
0 1 6 10
1 2 7 4
2 3 8 9
3 4 9 14
4 5 10 15
and
/or
(similar to the if
/else
)Similar to if-else
, requires the lambda
:
df['three'] = df["one"].apply(
lambda x: (x < 2 and x * 10) or (x < 4 and x ** 2) or x + 10)
df
one two three
0 1 6 10
1 2 7 4
2 3 8 9
3 4 9 14
4 5 10 15
Loopy solution that is still faster than apply
.
df['three'] = [x*10 if x<2 else (x**2 if x<4 else x+10) for x in df['one']]
# df['three'] = [
# (x < 2 and x * 10) or (x < 4 and x ** 2) or x + 10) for x in df['one']
# ]
df
one two three
0 1 6 10
1 2 7 4
2 3 8 9
3 4 9 14
4 5 10 15
For readability I prefer to write a function, especially if you are dealing with many conditions. For the original question:
def parse_values(x):
if x < 2:
return x * 10
elif x < 4:
return x ** 2
else:
return x + 10
df['one'].apply(parse_values)