Lambda including if…elif…else

后端 未结 3 1995
清歌不尽
清歌不尽 2020-11-28 20:29

I want to apply a lambda function to a DataFrame column using if...elif...else within the lambda function.

The df and the code are smth. like:

df=pd.         


        
相关标签:
3条回答
  • 2020-11-28 21:27

    Nest if .. elses:

    lambda x: x*10 if x<2 else (x**2 if x<4 else x+10)
    
    0 讨论(0)
  • 2020-11-28 21:27

    I do not recommend the use of apply here: it should be avoided if there are better alternatives.

    For example, if you are performing the following operation on a Series:

    if cond1:
        exp1
    elif cond2:
        exp2
    else:
        exp3
    

    This is usually a good use case for np.where or np.select.


    numpy.where

    The if else chain above can be written using

    np.where(cond1, exp1, np.where(cond2, exp2, ...))
    

    np.where allows nesting. With one level of nesting, your problem can be solved with,

    df['three'] = (
        np.where(
            df['one'] < 2, 
            df['one'] * 10, 
            np.where(df['one'] < 4, df['one'] ** 2, df['one'] + 10))
    df
    
       one  two  three
    0    1    6     10
    1    2    7      4
    2    3    8      9
    3    4    9     14
    4    5   10     15
    

    numpy.select

    Allows for flexible syntax and is easily extensible. It follows the form,

    np.select([cond1, cond2, ...], [exp1, exp2, ...])
    

    Or, in this case,

    np.select([cond1, cond2], [exp1, exp2], default=exp3)
    

    df['three'] = (
        np.select(
            condlist=[df['one'] < 2, df['one'] < 4], 
            choicelist=[df['one'] * 10, df['one'] ** 2], 
            default=df['one'] + 10))
    df
    
       one  two  three
    0    1    6     10
    1    2    7      4
    2    3    8      9
    3    4    9     14
    4    5   10     15
    

    and/or (similar to the if/else)

    Similar to if-else, requires the lambda:

    df['three'] = df["one"].apply(
        lambda x: (x < 2 and x * 10) or (x < 4 and x ** 2) or x + 10) 
    
    df
       one  two  three
    0    1    6     10
    1    2    7      4
    2    3    8      9
    3    4    9     14
    4    5   10     15
    

    List Comprehension

    Loopy solution that is still faster than apply.

    df['three'] = [x*10 if x<2 else (x**2 if x<4 else x+10) for x in df['one']]
    # df['three'] = [
    #    (x < 2 and x * 10) or (x < 4 and x ** 2) or x + 10) for x in df['one']
    # ]
    df
       one  two  three
    0    1    6     10
    1    2    7      4
    2    3    8      9
    3    4    9     14
    4    5   10     15
    
    0 讨论(0)
  • 2020-11-28 21:31

    For readability I prefer to write a function, especially if you are dealing with many conditions. For the original question:

    def parse_values(x):
        if x < 2:
           return x * 10
        elif x < 4:
           return x ** 2
        else:
           return x + 10
    
    df['one'].apply(parse_values)
    
    0 讨论(0)
提交回复
热议问题