Lets say I have the following code:
import collections
d = collections.OrderedDict()
d[\'foo\'] = \'python\'
d[\'bar\'] = \'spam\'
Is there
If its an OrderedDict()
you can easily access the elements by indexing by getting the tuples of (key,value) pairs as follows
>>> import collections
>>> d = collections.OrderedDict()
>>> d['foo'] = 'python'
>>> d['bar'] = 'spam'
>>> d.items()
[('foo', 'python'), ('bar', 'spam')]
>>> d.items()[0]
('foo', 'python')
>>> d.items()[1]
('bar', 'spam')
Note for Python 3.X
dict.items
would return an iterable dict view object rather than a list. We need to wrap the call onto a list in order to make the indexing possible
>>> items = list(d.items())
>>> items
[('foo', 'python'), ('bar', 'spam')]
>>> items[0]
('foo', 'python')
>>> items[1]
('bar', 'spam')
If you're dealing with fixed number of keys that you know in advance, use Python's inbuilt namedtuples instead. A possible use-case is when you want to store some constant data and access it throughout the program by both indexing and specifying keys.
import collections
ordered_keys = ['foo', 'bar']
D = collections.namedtuple('D', ordered_keys)
d = D(foo='python', bar='spam')
d[0] # result: python
d[1] # result: spam
d.foo # result: python
d.bar # result: spam
Or better:
getattr(d, 'foo') # result: python
getattr(d, 'bar') # result: spam
Do you have to use an OrderedDict or do you specifically want a map-like type that's ordered in some way with fast positional indexing? If the latter, then consider one of Python's many sorted dict types (which orders key-value pairs based on key sort order). Some implementations also support fast indexing. For example, the sortedcontainers project has a SortedDict type for just this purpose.
>>> from sortedcontainers import SortedDict
>>> sd = SortedDict()
>>> sd['foo'] = 'python'
>>> sd['bar'] = 'spam'
>>> print sd.iloc[0] # Note that 'bar' comes before 'foo' in sort order.
'bar'
>>> # If you want the value, then simple do a key lookup:
>>> print sd[sd.iloc[1]]
'python'
Here is a special case if you want the first entry (or close to it) in an OrderedDict, without creating a list. (This has been updated to Python 3):
>>> from collections import OrderedDict
>>>
>>> d = OrderedDict()
>>> d["foo"] = "one"
>>> d["bar"] = "two"
>>> d["baz"] = "three"
>>> next(iter(d.items()))
('foo', 'one')
>>> next(iter(d.values()))
'one'
(The first time you say "next()", it really means "first.")
In my informal test, next(iter(d.items()))
with a small OrderedDict is only a tiny bit faster than items()[0]
. With an OrderedDict of 10,000 entries, next(iter(d.items()))
was about 200 times faster than items()[0]
.
BUT if you save the items() list once and then use the list a lot, that could be faster. Or if you repeatedly { create an items() iterator and step through it to to the position you want }, that could be slower.
This community wiki attempts to collect existing answers.
Python 2.7
In python 2, the keys()
, values()
, and items()
functions of OrderedDict
return lists. Using values
as an example, the simplest way is
d.values()[0] # "python"
d.values()[1] # "spam"
For large collections where you only care about a single index, you can avoid creating the full list using the generator versions, iterkeys
, itervalues
and iteritems
:
import itertools
next(itertools.islice(d.itervalues(), 0, 1)) # "python"
next(itertools.islice(d.itervalues(), 1, 2)) # "spam"
The indexed.py package provides IndexedOrderedDict
, which is designed for this use case and will be the fastest option.
from indexed import IndexedOrderedDict
d = IndexedOrderedDict({'foo':'python','bar':'spam'})
d.values()[0] # "python"
d.values()[1] # "spam"
Using itervalues can be considerably faster for large dictionaries with random access:
$ python2 -m timeit -s 'from collections import OrderedDict; from random import randint; size = 1000; d = OrderedDict({i:i for i in range(size)})' 'i = randint(0, size-1); d.values()[i:i+1]'
1000 loops, best of 3: 259 usec per loop
$ python2 -m timeit -s 'from collections import OrderedDict; from random import randint; size = 10000; d = OrderedDict({i:i for i in range(size)})' 'i = randint(0, size-1); d.values()[i:i+1]'
100 loops, best of 3: 2.3 msec per loop
$ python2 -m timeit -s 'from collections import OrderedDict; from random import randint; size = 100000; d = OrderedDict({i:i for i in range(size)})' 'i = randint(0, size-1); d.values()[i:i+1]'
10 loops, best of 3: 24.5 msec per loop
$ python2 -m timeit -s 'from collections import OrderedDict; from random import randint; size = 1000; d = OrderedDict({i:i for i in range(size)})' 'i = randint(0, size-1); next(itertools.islice(d.itervalues(), i, i+1))'
10000 loops, best of 3: 118 usec per loop
$ python2 -m timeit -s 'from collections import OrderedDict; from random import randint; size = 10000; d = OrderedDict({i:i for i in range(size)})' 'i = randint(0, size-1); next(itertools.islice(d.itervalues(), i, i+1))'
1000 loops, best of 3: 1.26 msec per loop
$ python2 -m timeit -s 'from collections import OrderedDict; from random import randint; size = 100000; d = OrderedDict({i:i for i in range(size)})' 'i = randint(0, size-1); next(itertools.islice(d.itervalues(), i, i+1))'
100 loops, best of 3: 10.9 msec per loop
$ python2 -m timeit -s 'from indexed import IndexedOrderedDict; from random import randint; size = 1000; d = IndexedOrderedDict({i:i for i in range(size)})' 'i = randint(0, size-1); d.values()[i]'
100000 loops, best of 3: 2.19 usec per loop
$ python2 -m timeit -s 'from indexed import IndexedOrderedDict; from random import randint; size = 10000; d = IndexedOrderedDict({i:i for i in range(size)})' 'i = randint(0, size-1); d.values()[i]'
100000 loops, best of 3: 2.24 usec per loop
$ python2 -m timeit -s 'from indexed import IndexedOrderedDict; from random import randint; size = 100000; d = IndexedOrderedDict({i:i for i in range(size)})' 'i = randint(0, size-1); d.values()[i]'
100000 loops, best of 3: 2.61 usec per loop
+--------+-----------+----------------+---------+
| size | list (ms) | generator (ms) | indexed |
+--------+-----------+----------------+---------+
| 1000 | .259 | .118 | .00219 |
| 10000 | 2.3 | 1.26 | .00224 |
| 100000 | 24.5 | 10.9 | .00261 |
+--------+-----------+----------------+---------+
Python 3.6
Python 3 has the same two basic options (list vs generator), but the dict methods return generators by default.
List method:
list(d.values())[0] # "python"
list(d.values())[1] # "spam"
Generator method:
import itertools
next(itertools.islice(d.values(), 0, 1)) # "python"
next(itertools.islice(d.values(), 1, 2)) # "spam"
Python 3 dictionaries are an order of magnitude faster than python 2 and have similar speedups for using generators.
+--------+-----------+----------------+---------+
| size | list (ms) | generator (ms) | indexed |
+--------+-----------+----------------+---------+
| 1000 | .0316 | .0165 | .00262 |
| 10000 | .288 | .166 | .00294 |
| 100000 | 3.53 | 1.48 | .00332 |
+--------+-----------+----------------+---------+
If you have pandas
installed, you can convert the ordered dict to a pandas Series
. This will allow random access to the dictionary elements.
>>> import collections
>>> import pandas as pd
>>> d = collections.OrderedDict()
>>> d['foo'] = 'python'
>>> d['bar'] = 'spam'
>>> s = pd.Series(d)
>>> s['bar']
spam
>>> s.iloc[1]
spam
>>> s.index[1]
bar