An interviewer recently asked me this question: given three boolean variables, a, b, and c, return true if at least two out of the three are true.
My solution follow
Why not implement it literally? :)
(a?1:0)+(b?1:0)+(c?1:0) >= 2
In C you could just write a+b+c >= 2
(or !!a+!!b+!!c >= 2
to be very safe).
In response to TofuBeer's comparison of java bytecode, here is a simple performance test:
class Main
{
static boolean majorityDEAD(boolean a,boolean b,boolean c)
{
return a;
}
static boolean majority1(boolean a,boolean b,boolean c)
{
return a&&b || b&&c || a&&c;
}
static boolean majority2(boolean a,boolean b,boolean c)
{
return a ? b||c : b&&c;
}
static boolean majority3(boolean a,boolean b,boolean c)
{
return a&b | b&c | c&a;
}
static boolean majority4(boolean a,boolean b,boolean c)
{
return (a?1:0)+(b?1:0)+(c?1:0) >= 2;
}
static int loop1(boolean[] data, int i, int sz1, int sz2)
{
int sum = 0;
for(int j=i;j<i+sz1;j++)
{
for(int k=j;k<j+sz2;k++)
{
sum += majority1(data[i], data[j], data[k])?1:0;
sum += majority1(data[i], data[k], data[j])?1:0;
sum += majority1(data[j], data[k], data[i])?1:0;
sum += majority1(data[j], data[i], data[k])?1:0;
sum += majority1(data[k], data[i], data[j])?1:0;
sum += majority1(data[k], data[j], data[i])?1:0;
}
}
return sum;
}
static int loop2(boolean[] data, int i, int sz1, int sz2)
{
int sum = 0;
for(int j=i;j<i+sz1;j++)
{
for(int k=j;k<j+sz2;k++)
{
sum += majority2(data[i], data[j], data[k])?1:0;
sum += majority2(data[i], data[k], data[j])?1:0;
sum += majority2(data[j], data[k], data[i])?1:0;
sum += majority2(data[j], data[i], data[k])?1:0;
sum += majority2(data[k], data[i], data[j])?1:0;
sum += majority2(data[k], data[j], data[i])?1:0;
}
}
return sum;
}
static int loop3(boolean[] data, int i, int sz1, int sz2)
{
int sum = 0;
for(int j=i;j<i+sz1;j++)
{
for(int k=j;k<j+sz2;k++)
{
sum += majority3(data[i], data[j], data[k])?1:0;
sum += majority3(data[i], data[k], data[j])?1:0;
sum += majority3(data[j], data[k], data[i])?1:0;
sum += majority3(data[j], data[i], data[k])?1:0;
sum += majority3(data[k], data[i], data[j])?1:0;
sum += majority3(data[k], data[j], data[i])?1:0;
}
}
return sum;
}
static int loop4(boolean[] data, int i, int sz1, int sz2)
{
int sum = 0;
for(int j=i;j<i+sz1;j++)
{
for(int k=j;k<j+sz2;k++)
{
sum += majority4(data[i], data[j], data[k])?1:0;
sum += majority4(data[i], data[k], data[j])?1:0;
sum += majority4(data[j], data[k], data[i])?1:0;
sum += majority4(data[j], data[i], data[k])?1:0;
sum += majority4(data[k], data[i], data[j])?1:0;
sum += majority4(data[k], data[j], data[i])?1:0;
}
}
return sum;
}
static int loopDEAD(boolean[] data, int i, int sz1, int sz2)
{
int sum = 0;
for(int j=i;j<i+sz1;j++)
{
for(int k=j;k<j+sz2;k++)
{
sum += majorityDEAD(data[i], data[j], data[k])?1:0;
sum += majorityDEAD(data[i], data[k], data[j])?1:0;
sum += majorityDEAD(data[j], data[k], data[i])?1:0;
sum += majorityDEAD(data[j], data[i], data[k])?1:0;
sum += majorityDEAD(data[k], data[i], data[j])?1:0;
sum += majorityDEAD(data[k], data[j], data[i])?1:0;
}
}
return sum;
}
static void work()
{
boolean [] data = new boolean [10000];
java.util.Random r = new java.util.Random(0);
for(int i=0;i<data.length;i++)
data[i] = r.nextInt(2) > 0;
long t0,t1,t2,t3,t4,tDEAD;
int sz1 = 100;
int sz2 = 100;
int sum = 0;
t0 = System.currentTimeMillis();
for(int i=0;i<data.length-sz1-sz2;i++)
sum += loop1(data, i, sz1, sz2);
t1 = System.currentTimeMillis();
for(int i=0;i<data.length-sz1-sz2;i++)
sum += loop2(data, i, sz1, sz2);
t2 = System.currentTimeMillis();
for(int i=0;i<data.length-sz1-sz2;i++)
sum += loop3(data, i, sz1, sz2);
t3 = System.currentTimeMillis();
for(int i=0;i<data.length-sz1-sz2;i++)
sum += loop4(data, i, sz1, sz2);
t4 = System.currentTimeMillis();
for(int i=0;i<data.length-sz1-sz2;i++)
sum += loopDEAD(data, i, sz1, sz2);
tDEAD = System.currentTimeMillis();
System.out.println("a&&b || b&&c || a&&c : " + (t1-t0) + " ms");
System.out.println(" a ? b||c : b&&c : " + (t2-t1) + " ms");
System.out.println(" a&b | b&c | c&a : " + (t3-t2) + " ms");
System.out.println(" a + b + c >= 2 : " + (t4-t3) + " ms");
System.out.println(" DEAD : " + (tDEAD-t4) + " ms");
System.out.println("sum: "+sum);
}
public static void main(String[] args) throws InterruptedException
{
while(true)
{
work();
Thread.sleep(1000);
}
}
}
This prints the following on my machine (running Ubuntu on Intel Core 2 + sun java 1.6.0_15-b03 with HotSpot Server VM (14.1-b02, mixed mode)):
First and second iterations:
a&&b || b&&c || a&&c : 1740 ms
a ? b||c : b&&c : 1690 ms
a&b | b&c | c&a : 835 ms
a + b + c >= 2 : 348 ms
DEAD : 169 ms
sum: 1472612418
Later iterations:
a&&b || b&&c || a&&c : 1638 ms
a ? b||c : b&&c : 1612 ms
a&b | b&c | c&a : 779 ms
a + b + c >= 2 : 905 ms
DEAD : 221 ms
I wonder, what could java VM do that degrades performance over time for (a + b + c >= 2) case.
And here is what happens if I run java with a -client
VM switch:
a&&b || b&&c || a&&c : 4034 ms
a ? b||c : b&&c : 2215 ms
a&b | b&c | c&a : 1347 ms
a + b + c >= 2 : 6589 ms
DEAD : 1016 ms
Mystery...
And if I run it in GNU Java Interpreter, it gets almost 100 times slower, but the a&&b || b&&c || a&&c
version wins then.
Results from Tofubeer with the latest code running OS X:
a&&b || b&&c || a&&c : 1358 ms
a ? b||c : b&&c : 1187 ms
a&b | b&c | c&a : 410 ms
a + b + c >= 2 : 602 ms
DEAD : 161 ms
Results from Paul Wagland with a Mac Java 1.6.0_26-b03-383-11A511
a&&b || b&&c || a&&c : 394 ms
a ? b||c : b&&c : 435 ms
a&b | b&c | c&a : 420 ms
a + b + c >= 2 : 640 ms
a ^ b ? c : a : 571 ms
a != b ? c : a : 487 ms
DEAD : 170 ms
Taking the answers (so far) here:
public class X
{
static boolean a(final boolean a, final boolean b, final boolean c)
{
return ((a && b) || (b && c) || (a && c));
}
static boolean b(final boolean a, final boolean b, final boolean c)
{
return a ? (b || c) : (b && c);
}
static boolean c(final boolean a, final boolean b, final boolean c)
{
return ((a & b) | (b & c) | (c & a));
}
static boolean d(final boolean a, final boolean b, final boolean c)
{
return ((a?1:0)+(b?1:0)+(c?1:0) >= 2);
}
}
and running them through the decompiler (javap -c X > results.txt):
Compiled from "X.java"
public class X extends java.lang.Object{
public X();
Code:
0: aload_0
1: invokespecial #1; //Method java/lang/Object."<init>":()V
4: return
static boolean a(boolean, boolean, boolean);
Code:
0: iload_0
1: ifeq 8
4: iload_1
5: ifne 24
8: iload_1
9: ifeq 16
12: iload_2
13: ifne 24
16: iload_0
17: ifeq 28
20: iload_2
21: ifeq 28
24: iconst_1
25: goto 29
28: iconst_0
29: ireturn
static boolean b(boolean, boolean, boolean);
Code:
0: iload_0
1: ifeq 20
4: iload_1
5: ifne 12
8: iload_2
9: ifeq 16
12: iconst_1
13: goto 33
16: iconst_0
17: goto 33
20: iload_1
21: ifeq 32
24: iload_2
25: ifeq 32
28: iconst_1
29: goto 33
32: iconst_0
33: ireturn
static boolean c(boolean, boolean, boolean);
Code:
0: iload_0
1: iload_1
2: iand
3: iload_1
4: iload_2
5: iand
6: ior
7: iload_2
8: iload_0
9: iand
10: ior
11: ireturn
static boolean d(boolean, boolean, boolean);
Code:
0: iload_0
1: ifeq 8
4: iconst_1
5: goto 9
8: iconst_0
9: iload_1
10: ifeq 17
13: iconst_1
14: goto 18
17: iconst_0
18: iadd
19: iload_2
20: ifeq 27
23: iconst_1
24: goto 28
27: iconst_0
28: iadd
29: iconst_2
30: if_icmplt 37
33: iconst_1
34: goto 38
37: iconst_0
38: ireturn
}
You can see that the ?: ones are slightly better then the fixed up version of your original. The one that is the best is the one that avoids branching altogether. That is good from the point of view of fewer instructions (in most cases) and better for branch prediction parts of the CPU, since a wrong guess in the branch prediction can cause CPU stalling.
I'd say the most efficient one is the one from moonshadow overall. It uses the fewest instructions on average and reduces the chance for pipeline stalls in the CPU.
To be 100% sure you would need to find out the cost (in CPU cycles) for each instruction, which, unfortunately isn't readily available (you would have to look at the source for hotspot and then the CPU vendors specs for the time taken for each generated instruction).
See the updated answer by Rotsor for a runtime analysis of the code.
We can convert the bools to integers and perform this easy check:
(int(a) + int(b) + int(c)) >= 2
return 1 << $a << $b << $c >= 1 << 2;
You don't need to use the short circuiting forms of the operators.
return (a & b) | (b & c) | (c & a);
This performs the same number of logic operations as your version, however is completely branchless.
Rather than writing:
if (someExpression) {
return true;
} else {
return false;
}
Write:
return someExpression;
As for the expression itself, something like this:
boolean atLeastTwo(boolean a, boolean b, boolean c) {
return a ? (b || c) : (b && c);
}
or this (whichever you find easier to grasp):
boolean atLeastTwo(boolean a, boolean b, boolean c) {
return a && (b || c) || (b && c);
}
It tests a
and b
exactly once, and c
at most once.