I think I\'m going insane with this.
I have a a piece of code that needs to create an (unsigned) integer with N
consequent bits set to 1. To be exact I
If I have understood the requirements, you want an unsigned int, with the top N bits set?
There are several ways to get the result (I think) you want. Edit: I am worried that this isnt very robust, and will fail for n>32:
uint32_t set_top_n(uint32 n)
{
static uint32_t value[33] = { ~0xFFFFFFFF, ~0x7FFFFFFF, ~0x3FFFFFFF, ~0x1FFFFFFF,
~0x0FFFFFFF, ~0x07FFFFFF, ~0x03FFFFFF, ~0x01FFFFFF,
~0x00FFFFFF, ~0x007FFFFF, ~0x003FFFFF, ~0x001FFFFF,
// you get the idea
0xFFFFFFFF
};
return value[n & 0x3f];
}
This should be quite fast as it is only 132 bytes of data.
To make it robust, I'd either extend for all values up to 63, or make it conditional, in which case it can be done with a version of your original bit-masking + the 32 case. I.e.
1U << 32
is undefined behavior in C and in C++ when type unsigned int
is 32-bit wide.
(C11, 6.5.7p3) "If the value of the right operand is negative or is greater than or equal to the width of the promoted left operand, the behavior is undefined"
(C++11, 5.8p1) "The behavior is undefined if the right operand is negative, or greater than or equal to the length in bits of the promoted left operand."
I think the expression 1 << 32
is the same as 1 << 0
. IA-32 Instruction Set Reference says that the count operand of shift instructions is masked to 5 bits.
The instruction set reference of IA-32 architectures can be found here.
To fix the "extreme" case, I can only come up with the following code (maybe buggy) that may be a little awkward:
void MaskAddRange(UINT *mask, UINT first, UINT count) {
int count2 = ((count & 0x20) >> 5);
int count1 = count - count2;
*mask |= (((1 << count1) << count2) - 1) << first;
}
The basic idea is to split the shift operation so that each shift count does not exceed 31. Apparently, the above code assumes that the count is in a range of 0..32, so it is not very robust.
Shifting by as many or more bits than in the integer type you're shifting is undefined in C and C++. On x86 and x86_64, the shift amount of the shift instructions is indeed treated modulo 32 (or whatever the operand size is). You however cannot rely on this modulo behaviour to be generated by your compiler from C or C++ >>
/<<
operations unless your compiler explicitly guarantees it in its documentation.
You could avoid the undefined behavior by splitting the shift operation in two steps, the first one by (count - 1) bits and the second one by 1 more bit. Special care is needed in case count is zero, however:
void MaskAddRange(UINT& mask, UINT first, UINT count)
{
if (count == 0) return;
mask |= ((1 << (count - 1) << 1) - 1) << first;
}
My 32 cents:
#include <limits.h>
#define INT_BIT (CHAR_BIT * sizeof(int))
unsigned int set_bit_range(unsigned int n, int frm, int cnt)
{
return n | ((~0u >> (INT_BIT - cnt)) << frm);
}
List 1.
A safe version with bogus / semi-circular result could be:
unsigned int set_bit_range(unsigned int n, int f, int c)
{
return n | (~0u >> (c > INT_BIT ? 0 : INT_BIT - c)) << (f % INT_BIT);
}
List 2.
Doing this without branching, or local variables, could be something like;
return n | (~0u >> ((INT_BIT - c) % INT_BIT)) << (f % INT_BIT);
List 3.
List 2 and List 3 This would give "correct" result as long as from
is less then INT_BIT
and >= 0. I.e.:
./bs 1761 26 810
Setting bits from 26 count 810 in 1761 -- of 32 bits
Trying to set bits out of range, set bits from 26 to 836 in 32 sized range
x = ~0u = 1111 1111 1111 1111 1111 1111 1111 1111
Unsafe version:
x = x >> -778 = 0000 0000 0000 0000 0000 0011 1111 1111
x = x << 26 = 1111 1100 0000 0000 0000 0000 0000 0000
x v1 Result = 1111 1100 0000 0000 0000 0110 1110 0001
Original: 0000 0000 0000 0000 0000 0110 1110 0001
Safe version, branching:
x = x >> 0 = 1111 1111 1111 1111 1111 1111 1111 1111
x = x << 26 = 1111 1100 0000 0000 0000 0000 0000 0000
x v2 Result = 1111 1100 0000 0000 0000 0110 1110 0001
Original: 0000 0000 0000 0000 0000 0110 1110 0001
Safe version, modulo:
x = x >> 22 = 0000 0000 0000 0000 0000 0011 1111 1111
x = x << 26 = 1111 1100 0000 0000 0000 0000 0000 0000
x v3 Result = 1111 1100 0000 0000 0000 0110 1110 0001
Original: 0000 0000 0000 0000 0000 0110 1110 0001