I have a date column in my Spark DataDrame
that contains multiple string formats. I would like to cast these to DateTime.
The two formats in my column a
You can do this in 100% sql with something like this:
create database delete_me;
use delete_me;
create table test (enc_date string);
insert into test values ('10/28/2019');
insert into test values ('2020-03-31 00:00:00.000');
insert into test values ('2019-10-18');
insert into test values ('gobledie-gook');
insert into test values ('');
insert into test values (null);
insert into test values ('NULL');
-- you might need the following line depending on your version of spark
-- set spark.sql.legacy.timeParserPolicy = LEGACY;
select enc_date, coalesce(to_date(enc_date, "yyyy-MM-dd"), to_date(enc_date, "MM/dd/yyyy")) as date from test;
enc_date date
-------- ----
2020-03-31 00:00:00.000 2020-03-31
2019-10-18 2019-10-18
null null
10/28/2019 2019-10-28
gobledie-gook null
NULL null
null
Personally I would recommend using SQL functions directly without expensive and inefficient reformatting:
from pyspark.sql.functions import coalesce, to_date
def to_date_(col, formats=("MM/dd/yyyy", "yyyy-MM-dd")):
# Spark 2.2 or later syntax, for < 2.2 use unix_timestamp and cast
return coalesce(*[to_date(col, f) for f in formats])
This will choose the first format, which can successfully parse input string.
Usage:
df = spark.createDataFrame([(1, "01/22/2010"), (2, "2018-12-01")], ("id", "dt"))
df.withColumn("pdt", to_date_("dt")).show()
+---+----------+----------+
| id| dt| pdt|
+---+----------+----------+
| 1|01/22/2010|2010-01-22|
| 2|2018-12-01|2018-12-01|
+---+----------+----------+
It will be faster than udf
, and adding new formats is just a matter of adjusting formats
parameter.
However it won't help you with format ambiguities. In general case it might not be possible to do it without manual intervention and cross referencing with external data.
The same thing can be of course done in Scala:
import org.apache.spark.sql.Column
import org.apache.spark.sql.functions.{coalesce, to_date}
def to_date_(col: Column,
formats: Seq[String] = Seq("MM/dd/yyyy", "yyyy-MM-dd")) = {
coalesce(formats.map(f => to_date(col, f)): _*)
}