Good Day,
I am using the following code to calculate the 9 Day Moving average.
SELECT SUM(close)
FROM tbl
WHERE date <= \'2002-07-05\'
AND name_id
Use something like
SELECT
sum(close) as sum,
avg(close) as average
FROM (
SELECT
(close)
FROM
tbl
WHERE
date <= '2002-07-05'
AND name_id = 2
ORDER BY
date DESC
LIMIT 9 ) temp
The inner query returns all filtered rows in desc
order, and then you avg
, sum
up those rows returned.
The reason why the query
given by you doesn't work is due to the fact that the sum
is calculated first and the LIMIT
clause is applied after the sum
has already been calculated, giving you the sum
of all the rows present
Starting from MySQL 8, you should use window functions for this. Using the window RANGE
clause, you can create a logical window over an interval, which is very powerful. Something like this:
SELECT
date,
close,
AVG (close) OVER (ORDER BY date DESC RANGE INTERVAL 9 DAY PRECEDING)
FROM tbl
WHERE date <= DATE '2002-07-05'
AND name_id = 2
ORDER BY date DESC
For example:
WITH t (date, `close`) AS (
SELECT DATE '2020-01-01', 50 UNION ALL
SELECT DATE '2020-01-03', 54 UNION ALL
SELECT DATE '2020-01-05', 51 UNION ALL
SELECT DATE '2020-01-12', 49 UNION ALL
SELECT DATE '2020-01-13', 59 UNION ALL
SELECT DATE '2020-01-15', 30 UNION ALL
SELECT DATE '2020-01-17', 35 UNION ALL
SELECT DATE '2020-01-18', 39 UNION ALL
SELECT DATE '2020-01-19', 47 UNION ALL
SELECT DATE '2020-01-26', 50
)
SELECT
date,
`close`,
COUNT(*) OVER w AS c,
SUM(`close`) OVER w AS s,
AVG(`close`) OVER w AS a
FROM t
WINDOW w AS (ORDER BY date DESC RANGE INTERVAL 9 DAY PRECEDING)
ORDER BY date DESC
Leading to:
date |close|c|s |a |
----------|-----|-|---|-------|
2020-01-26| 50|1| 50|50.0000|
2020-01-19| 47|2| 97|48.5000|
2020-01-18| 39|3|136|45.3333|
2020-01-17| 35|4|171|42.7500|
2020-01-15| 30|4|151|37.7500|
2020-01-13| 59|5|210|42.0000|
2020-01-12| 49|6|259|43.1667|
2020-01-05| 51|3|159|53.0000|
2020-01-03| 54|3|154|51.3333|
2020-01-01| 50|3|155|51.6667|
If you want the moving average for each date, then try this:
SELECT date, SUM(close),
(select avg(close) from tbl t2 where t2.name_id = t.name_id and datediff(t2.date, t.date) <= 9
) as mvgAvg
FROM tbl t
WHERE date <= '2002-07-05' and
name_id = 2
GROUP BY date
ORDER BY date DESC
It uses a correlated subquery to calculate the average of 9 values.
an other technique is to do a table:
CREATE TABLE `tinyint_asc` (
`value` tinyint(3) unsigned NOT NULL default '0',
PRIMARY KEY (value)
) ;
INSERT INTO `tinyint_asc` VALUES (0),(1),(2),(3),(4),(5),(6),(7),(8),(9),(10),(11),(12),(13),(14),(15),(16),(17),(18),(19),(20),(21),(22),(23),(24),(25),(26),(27),(28),(29),(30),(31),(32),(33),(34),(35),(36),(37),(38),(39),(40),(41),(42),(43),(44),(45),(46),(47),(48),(49),(50),(51),(52),(53),(54),(55),(56),(57),(58),(59),(60),(61),(62),(63),(64),(65),(66),(67),(68),(69),(70),(71),(72),(73),(74),(75),(76),(77),(78),(79),(80),(81),(82),(83),(84),(85),(86),(87),(88),(89),(90),(91),(92),(93),(94),(95),(96),(97),(98),(99),(100),(101),(102),(103),(104),(105),(106),(107),(108),(109),(110),(111),(112),(113),(114),(115),(116),(117),(118),(119),(120),(121),(122),(123),(124),(125),(126),(127),(128),(129),(130),(131),(132),(133),(134),(135),(136),(137),(138),(139),(140),(141),(142),(143),(144),(145),(146),(147),(148),(149),(150),(151),(152),(153),(154),(155),(156),(157),(158),(159),(160),(161),(162),(163),(164),(165),(166),(167),(168),(169),(170),(171),(172),(173),(174),(175),(176),(177),(178),(179),(180),(181),(182),(183),(184),(185),(186),(187),(188),(189),(190),(191),(192),(193),(194),(195),(196),(197),(198),(199),(200),(201),(202),(203),(204),(205),(206),(207),(208),(209),(210),(211),(212),(213),(214),(215),(216),(217),(218),(219),(220),(221),(222),(223),(224),(225),(226),(227),(228),(229),(230),(231),(232),(233),(234),(235),(236),(237),(238),(239),(240),(241),(242),(243),(244),(245),(246),(247),(248),(249),(250),(251),(252),(253),(254),(255);
After you can used it like that:
select date_add(tbl.date, interval tinyint_asc.value day) as mydate, count(*), sum(myvalue)
from tbl inner join tinyint_asc.value <= 30 -- for a 30 day moving average
where date(date_add(o.created_at, interval tinyint_asc.value day)) between '2016-01-01' and current_date()
group by mydate
This query is fast:
select date, name_id,
case @i when name_id then @i:=name_id else (@i:=name_id)
and (@n:=0)
and (@a0:=0) and (@a1:=0) and (@a2:=0) and (@a3:=0) and (@a4:=0) and (@a5:=0) and (@a6:=0) and (@a7:=0) and (@a8:=0)
end as a,
case @n when 9 then @n:=9 else @n:=@n+1 end as n,
@a0:=@a1,@a1:=@a2,@a2:=@a3,@a3:=@a4,@a4:=@a5,@a5:=@a6,@a6:=@a7,@a7:=@a8,@a8:=close,
(@a0+@a1+@a2+@a3+@a4+@a5+@a6+@a7+@a8)/@n as av
from tbl,
(select @i:=0, @n:=0,
@a0:=0, @a1:=0, @a2:=0, @a3:=0, @a4:=0, @a5:=0, @a6:=0, @a7:=0, @a8:=0) a
where name_id=2
order by name_id, date
If you need an average over 50 or 100 values, it's tedious to write, but worth the effort. The speed is close to the ordered select.